Statistical Analysis of Hard Disk Drive Failure

Philip Matthew Unrue

Western Governors University

Abstract
Hard drive failure is the most common form of data loss, which is one of the most impactful problems
that businesses can experience. Being able to predict which hard drives are at the highest risk of failure
based on understanding of combinations of routine diagnostics test results is an ideal solution to backup
and replace failing drives before the data is lost. Backblaze’s 4th quarter data from 2019 is examined to
determine what information is most relevant to imminent hard drive failure on the day measured. A
logistic regression model and a decision tree are examined alongside PCA to look for important
predictors. A random forest ensemble model and neural networks are then created to find the most

promising predictive model for detecting impending hard drive failure.

Statistical Analysis of Hard Disk Drive Failure

Data helps businesses solve problems, make better decisions, and understand consumers,
but a lot of data needs to be stored and kept available to enable these benefits. Hard drive failure
is the most common form of data loss, which is one of the most impactful problems that
businesses can experience today as simple drive recovery can cost up to $7,500 per drive
(Painchaud, 2018). For data centers, keeping multitudes of businesses’ data intact for their own
operations is crucial. Being able to predict which hard drives are at the highest risk of failure
based on understanding of combinations of routine diagnostics test results is an ideal solution to

backup and replace failing drives before the data is lost.

Research Question

What factors indicate impending hard disk drive (HDD) failure? The null hypothesis is
that study factors do not significantly indicate impending hard disk drive failure. The alternative
hypothesis is that study factors do significantly indicate impending hard disk drive failure. The
study factors examined were sixty-two Self-Monitoring, Analysis and Reporting Technology
(SMART) test result values and three values of drive information, namely model number, drive
capacity, and failure status. These study factors can easily be gathered daily for each drive in a
data center without downtime and then maintained in a database to be leveraged for HDD
retirement with as little drive life wasted and as little data lost as possible. Once significance of
these factors was shown, logistic regression models, a decision tree, two random forest
ensembles, and two Multi-Layer Perceptron (MLP) models were examined to determine a best

approach to predicting HDD failure.

Data Collection

The dataset used was Backblaze’s 4™ quarter data from 2019 (Backblaze, 2020). All of
the needed data was contained within the .zip file that Backblaze provides to the public for
research and examination, simply downloaded from their web page. The dataset contains .csv
files for each day of its corresponding quarter, in this case from 2019-10-01 to 2019-12-31. As
an example, the subsection of the dataset for 2019-10-01 contains 115,259 rows of data.
However, as this data contains recorded readings from a live data center, the number of hard
drives and thus rows, changes daily as failed drives were taken out and new drives were
installed. The 129 column attributes of the dataset are Date, Serial Number, Model Number,
Capacity, Failure, 62 SMART test result values, and 62 normalized values of the SMART
values. The Failure attribute is the dependent variable of this study and is a qualitative binary
categorical variable. The Date, Serial Number, and Model are nominal qualitative independent
variables. Finally, the SMART value columns are continuous quantitative independent variables.
As stated in Backblaze’s Hard Drive Data and Stats page (Backblaze, n.d.), this dataset is free for
any use as long as Backblaze is cited as the data source, that users accept that they are solely
responsible for how the data is used, and that the data cannot be sold to anybody as it publicly

available.

Data Extraction and Preparation

In this project, Python and pandas were extensively used for the loading, tidying, and
manipulation of the dataset. All of the data handling and analysis were performed in a Jupyter

notebook. The dataset is made up of 92 .csv files totaling 3.13GB of text data. As hard drive

failure is an extremely rare event, all of these days are needed to be considered together in order
to have enough failures to draw conclusions. The project began by combining all parts of the
dataset from their .csv files into a single file. Python’s glob module was used to create a
generator of all dataset files in the project directory and a new dataset file made up of the column

indexes from the first file and the rows of each .csv file was written to disk.

if not os.path.isfile{'g4 combined.csv'):

e = mrama S ter AT J=+ = = £ 7 T Fha o I T e 7 3, gy
Lredarte 4 generartor o dartasSEer T1ile in ThNe CUurrent WorLding Qirecrory.

files = glng.glnbtns.path.jnintns.getcwdt}, "2018-*.csv"))

£ - o +1 FomlA PR E = S e] £47 ramg T e =k Toame 7 me =
F LOomoinge rLie Irields 1nto 4 sSingle rile, Wrirting rihne coliumn Indsex Irom
- - = T

only the first .csv file.
index = False
with open('g4 combined.csv', 'w') as= combined:
for file in files:
with open{file, 'r') as part:

if not index:
for row in part:
combined.write (row)
index = True

el=e:
next (part)
for row in part:
combined.write (row)

Before loading the combined dataset file into working memory, the rows were counted by
reading the lines of the file sequentially, finding a total of 10,991,209 rows of data. The
combined dataset was loaded into a pandas dataframe as 126 float64 columns, 2 int64 columns,
and 3 object (string) columns, for a total of 131 columns of data. The failure column values were
counted to find that out of the 10,991,209 hard drive days, there were only 678 failures, which

gives a failure rate of 0.006169%.

Weiss (2013) defined the imbalance ratio as the ratio between majority and minority

classes with a modestly imbalanced dataset having an imbalance ratio of 10:1, and extremely

imbalanced datasets as having an imbalance ratio of 1000:1 or greater (pg. 15). This dataset has
an imbalance ratio of approximately 16,210:1 and as such requires very careful cultivation for
any predictive model to successfully learn from. The rarity of the positive failure cases was also

the reason that the entire 4" quarter dataset was required.

Unfortunately, this combined file required too much memory to load all at once for
hardware limitations. It needed 13.5GB for just the data, not including the memory needed for

the OS and other software, nor memory for calculations.

F Doty erm + T ny] e T f + = = Togearm 2+ Fgr+
ELUrn TiE sSummed memory usage or €4Ccil Ccolumn 1In OYFLes.

memory usage = sum(df.memory usage (deep=True))
mMEMGTY usage

134946128713

print (st (memory_us=sage J 1000) + "EB")
print{str{"{:.2f}".format (memory usage J 1000000)) + "MB™)
print (str{"{:.2f}".format (memory usage J 1000000000)) + "GB"

134080129, 713EB
134849.13MB
13.50GB

Memory constraints often affect the available approaches to analyzing datasets. In the
base combined form, this dataset was too large to load into memory and perform most analysis
algorithms. Out-of-memory approaches could have helped solve this problem but reducing the
amount of loaded data allowed for standard in-memory approaches. As this dataset contains both
raw and normalized values for all of the SMART values, a simple way to deal with the memory
issues was to divide the dataset into a raw form and a normalized form. Two lists were created
from the columns, excluding the normalized or raw SMART value columns for each respective
file, and were then written to disk. Though preserved, the normalized data was ultimately

ignored from that point on, as normalization can be performed after all data tidying and

preparation is performed and before predictive models relying on normalization are created.

raw cols = []
for col in df.column=s.values:
if "normalized™ not in col:
raw_cols.append (col)

print (raw cols)

['date’, 'serial number', 'model', 'capacity bytes', "failure', "smart 1 raw
', 'smart Z raw', 'smart 3 raw', "smart 4 raw', 'smart 5 raw', 'smart 7 raw
¢ "smart B raw', 'smart 9 raw', 'smart 10 raw', 'smart 11 raw', 'smart 12 r
aw', 'smart 13 raw', 'smart 15 raw', "smart 16 raw', "smart 17 raw', 'smart
18 raw', 'smart 22 raw', 'smart 23 raw', 'smart 24 raw', 'smart 168 raw', '
mart 170 raw', 'smart 173 raw', 'smart 174 raw', 'smart 177 raw', SmﬂIt 1749
_raw', 'smart 18] raw', 'smart 182 raw', 'smart 183 raw', 'smart 184 raw', '
smart 187 raw', 'smart 188 raw', "smart 188 raw', "smart 190 raw', 'smart 18
1l raw', 'smart 192 raw', 'smart 183 raw', 'smart 184 raw', 'smart 195 raw',
'smart 196 raw', 'smart 197 raw', 'smart 198 raw', 'smart 199 raw', 'smart 2
00 raw', 'smart 201 raw', 'smart 218 raw', 'smart 220 raw', 'smart 222_;aw',
"smart 223 raw', 'smart 224 raw', 'smart 225 raw', 'smart 22& raw', 'smart 2
31 raw', 'smart 232 raw', 'smart 233 raw', 'smart 235 raw', 'smart 240 raw',
'smart 241 raw', 'smart 242 raw', 'smart 250 raw', 'smart 231 raw', 'smart 2

=

52 raw', "smart 254 raw', 'smart 255 raw']

if not os.path.isfile('g4 raw.csv'}):
df .to csv('gd raw.csv', columns = raw cols, index=False)

if not os.path.isfile('g4 normalized.csv'):
df . to cav('gd normalized.csv', columns = norm cols, index=False)

After the dataset was split off into all columns except the normalized columns, the raw
value dataset was loaded back into memory for preparation with enough memory leftover for the
appropriate analyses. In examining the dataset, all SMART value columns were found to have
NaN, pandas’ representation of null, values in them. The model column contains information on
the manufacturer of the drive as well as the drive model itself. As SMART implementation
varies by manufacturer, that is important information to leverage. Two model values stand out,
the “DELLBOSS VD” and the “Seagate SSD” models, pertaining to 60 drives and 96 drives

respectively. The first is a RAID controller and contains no SMART values in any row, and the

second appears to be a generic catch-all model value for some Seagate drives. Neither have any

failures in the dataset and are questionable entries, so these rows were removed.

df .loc[({df['model'] = "DELLBOSS VD") &
(df['failure'] = 1)]

date serial_number model capacity_bytes failure smart_1_raw smart_2 raw smart_3 raw sl

0 rows = 68 columns

£ >

df.loc[{(df['model'] = "Seagate 55D") &
(df['failure'] = 1)]

date serial_number model capacity_bytes failure smart_1_raw smart_2_raw smart_3_raw si

0 rows = 68 columns

< >

df .drop (df[(df['model'] =— "DELLEBOSS VD") | \

oo M

(df['model'] = "Seagate 55D")].index, axis = 0, inplace = True)

A dictionary of manufacturer and distinct model value was created for each dataset model

value, and the column was divided into a new model column and a manufacturer column.

Change the modesl column into Manufacturser and Modsl columns.
df['model temp'] = df['model']
df ['manufacturer'] = "'

df["'manufacturer'] = df['model temp'].map(lambda x: manufacturer dict[x][0])
df['model’] = df['model temp'].map(lambda x: manufacturer dict[x][1])

df.drop(['model temp'], axis=1, inplace=True)

Some columns contain redundant information, like the date column containing characters for the
year. To save some memory on disk backups and potentially loading memory, the column was

adjusted to only contain the month and day, and its dtype was changed to category.

df["date'] = df["date'] .str[-5:]

df .head ()

date serial_number model capacity_bytes failure smart_1_raw smart_2_r
0 10-01 Z305B20M ST40000CM0O00 4000737030016] 97236416.0 M
1 10-01 ZIVoxJ04 ST12000MMO007 12000138625024 0 4665536.0 M
2 10-01 ZINVOXIQ3 ST12000MM0O007 12000138625024] 928928720 M
3 10-01 ZIVoxJa0 ST12000MMO007 12000138625024 0 2317025440 M
4 10-01 PL1331LAHG1S4H HMS5C4040ALEE40 4000737030016] 0.0 10

5 rows = 69 columns

£ >

df['date'] = df['date'"] .astype("category')
df['date'] [0:5]

0 10-01

1 10-01

2 10-01

3 10-01

4 10-01

HName: date, dtype: category

Categories (92, cobjeect): [10-01, 10-02, 10-02, 10-04, ..., 12-28, 12-29, 12-
30, 12-31]

The model column was explicitly converted to categorical data and failure was converted to

boolean in the same manner.

In examining the capacity_bytes column for values to indicate reason for conversion to
categorical data, 1108 drive days distributed across all manufacturers were found to have an
error value of -1 rather than their actual capacity. These rows had the potential to be an excellent
signal for a failing drive, but ultimately none of the affected drives have a positive failure.
Though this was the largest amount of data cut from the dataset at this point, it only makes up an
insignificant 0.01% of the data. Given the error and lack of failures, these rows were dropped

from the dataset.

df.loc[df["capacity bytes"] = -1] ["manufacturer"].value counts()
Seagate 758
HGST 24948
Toshiba 48
Western Digital 2

Name: manufacturer, dtype: inted

Calcunlate the percentage of the dataset that is affected by this error.
strinp.around(((1008/n rows) * 100}, 2)) + "%"

'O.01%

df.drop (df[(df['capacity bytes'] = -1)].index, axis = 0, inplace = True)

Once the error rows were dropped, the value counts of the capacity _bytes column were

examined for further irregularities.

df['capacity bytes'].value counts ()

12000138625024 4855875

4000787030018 3197457
8001563222018 2308775
14000519643136 232122
500107862018 1771e6
10000831348736 1108493
6001175126016 825085
250058350018 6844
16000800661248 1840
2000398083401¢6 3535
1000204886018 81

Name: capacity bytes, dtype: inted

10

While some capacities are much rarer than others, none are out of place. To save memory and to

make the values more readable, the byte values were changed to represent the drives’ capacity in

terabytes. Peculiarly, the values did not line up with the 1024 kilo base or the rounded 1000 kilo

base representations of drive capacity. They were uniform however and were easily rounded to

an appropriate value. Once the new capacity column was created, the original was dropped.

dif['capacity TB'] = np.around((df['capacity bytes' 1/ (1000*1000*

df.head ()

0_raw smart_251_raw

decimals

= 2)

[
(=]
=
=

11

smart_252_raw smart_254 raw smart_255 raw manufacturer capacity_TB

Mam Makl Mam Mam Mam Seagate 4.0
Mam Mar Mam Mam Mam Seagate 12.0
Mam Makl Mam Mam Mam Seagate 12.0
Mam Mar Mam Mam Mam Seagate 12.0
Mak Mak RE Mak Mak HGST 4.0
€)3
df['capacity TB'].value counts ()
12.00 4E55875
4.00 3197457
B.00 23098775
14.00 232122
0.50 1771e6
10.00 1109493
6.00 B2595
0.25 eE44
1e.00 1840
2.00 355
1.00 g1
Name: capacity TB, dtype: inted
df .drop(['capacity _byte='], axi=s=1, inplace=True)
df .head ()

date serial_number model failure smart_1_raw smart_2_raw smart_3_raw
o 10-01 Z305B20M ST40000M0O00 False A7236416.0 Makh 0.0
1 10-01 ZINOK 104 ST12000MM0O007 False 4665536.0 MakM 0.0
2 10-01 ZINOXIQ3 ST12000MM0O007 False 92892872.0 Makh 0.0
3 10-01 ZINOK Q0 ST12000MM0O007 False 2317025440 Mak 0.0
4 10-01 PL1331LAHG1S4H HMS5C4040ALEG40 False 0.0 103.0 436.0
5 rows = 69 columns

>

<

With the general tidying complete, the univariate distributions were examined to gain a

12

better sense of the data. Examining the distribution of the first column, date, showed some sort of

testing or operational failure on November 5th.

plt.figure (fig=ize = (20, 10}))
plt.title ('"Humber of Drives in Operation per Day (Q4 2018)")
sns.countplot (df["date'], data = df)
.set xticklabels(g.get xticklabels(), rotation = 80)
.figure.s=savefig("Charts/Date Distribution.png")
.figure.s=savefig("Charts/Date Distribution.svg")

g ‘

8838858
eddddd e

oo g g

Number of Drives in Operation per Day (Q4 2019)

Drive capacities are mostly 4, 8, and 12 TB, likely coinciding with large investments in new

drives for the datacenter and possibly alongside the price lowering of specific models.

plt.figure(figsize = (3, 3))

plt.title{'Capacity of Drives')

g = sns.countplot (df['capacity TE'], data = df)

g.set xticklabels(g.get xticklabels(), rotation = 90}

for p in g.patches:
percentage = "{0:.2f}".format (({p.get height () ! n rows) * 100) + "&"
g.annotate (percentage, (p.get x() + p.get width{) I 2., p-get height(}),

ha = 'center', wa = 'center', xytext = (0, 7), textcoords = 'offset points'

g.figure.savefig("Charts/Capacity Distribution.svg")
g.fiqure.=savefiqg("Charts/Capacity Distribution.svg")

126 Capacity of Drives
5 44 24%
F]
29.13%
3
E
3 21.05%
2
1
1.61% 211%
o 09% B 0.00%0.00%] e 0.02%
S w3y [=] L=} = = = [=1 [=] o [=1
g (=} — [} =+ L=} o = ol e o

capacity_TB

The manufacturer of the most drives in this dataset is Seagate at 72.59%. HGST is the second

13

highest at 24.24%. Western Digital is the least represented manufacturer in the dataset with only

0.23%, but as HGST was acquired by Western Digital in 2012 (Sanders, 2018), the drives in this

dataset are likely be quite similar between the two manufacturers given the seven-year timespan

between then and the time of dataset recording and creation. Finally, Toshiba is the other
manufacturer, with 2.94% of the dataset. This amount is quite low and potentially made it

difficult to accurately predict their drives in comparison.

plt.figure({figsize = (3, 3))
plt.title {'"Manufacturers of Drives')
g = sns.countplot (df["manufacturer'], data = df)
g.set xticklabels(g.get xticklabels(), rotation = 20}
for p in g.patches:
percentage = "{0:.2f}".format(({p.get height () ! n rows) * 100) + "&"

g.annotate (percentage, (p.get x() + p.get width{) I 2., p-get height{}),
ha = 'center', va = 'center", xytext = (0, 7), textcoords = 'offset points

g.fiqure.savefig("Charts/Manufacturer Distribution.=svg")
g.fiqure.savefiqg("Charts/Manufacturer Distribution.png")

14

1e6 Manufacturers of Drives
T2.59%

ocount

24245
2
;
284%
0.23%
0 I
T
m
3 2

‘Westerm Digital

manufaciurer

The SMART values vary greatly from the number of different types of drives that exist in
this dataset. Before the columns could be graphed appropriately, the NaN values needed to be
examined and then interpolated or filled in with summary statistics. The proportion of the

models’ missing values for each column was calculated and then graphed as a heatmap.

model nan percent df = pd.DataFrame ()
for model in df['model'].unigue():
model nan percent df[model] = (df.loc[df['model’] = model].isna().sum() |
flen(df.loc[df['model’'] == mnodel])

plt.figure (figsize = (20, 20))

plt.title{'Model NaN Value Proportion by Hard Drive Model')
g = sns.heatmap (model nan percent df, linewidths=0.2)
g.figure.zavefiqg("Charts/Model Hall Heatmap.svg")
g.figure.savefig("Charts/Model Hal Heatmap.png")

15

Model NaN Value Proportion by Hard Drive Model

smart_3_raw

smart_10_raw
smart_11_raw

smart_12_raw
smart_13_raw

.
smart_22_raw H [] []

smart_23_raw
smart_24_raw
smart_168_raw
smart_170_raw
smart_173_raw
smart_174_raw
smart_177_raw

smart_179_raw
smart_181_raw
smart_182_raw

smart_183_raw [l

smart_195_raw
smart_196_raw
smart_197_rax
smart_198_ray
smart_199_raw [l
smart_200_raw
smart_201_raw

smart_218_raw
smart_220_raw
smart_222_raw
smart_223_raw
smart_224_raw
smart_225_raw
smart_226_raw
smart_231_raw
smart_232_raw

smart_233_raw
smart_235_raw

smert 240_row [

capaciy_T8
pacity_ [| 00
e53B83gses g8z %328 58828t g 8¢
g§ggEeggs g g8z z8 28 ¢% gt g €32
g 8s:28¢2z9 gsf2ed s 858 ¢gs R
§22z2818% g S z g ES §2283 : 2 g8 z 32
g88s8gs¢ 8 SS§:EZ¢s 32828 g8 8
2 8 2 8 8 ¢ & & 8 =] a g 2 8 2 8 8 8
g § 8 g ¢ g 5 2 g 2 8 8 2 2
" r 8568 8R b =g g8 =27 85 b £ 2
£ 2k £ b c
° g 23 5 o E 2] 2 55
H 2 2 2 e 2

For specific numbers on the NaN values in each column, a new dataframe was created
from the count output row of pandas’ describe function, which counts the non-NaN values of the
column. The percentage of non-NaN values was then added as an additional column in the new
dataframe. To assist in quick recognition of the information, a styling function was created and

then applied to the percentage column.

count df = pd.DataFrame ()
count df['count'] = description df.iloc[0]
count df

Pandas styling function
def highlight count nansl(val):
if val »>= 66.6:
color = 'green'
elif wval »>= 332.3 and val < 66.6:
color = 'yellow'
else:
color = 'red"

return "color: %='" % color

count df['perc not nan'] = (count df['count'] ! n rows) * 100
count df.style.applymap(highlight count nansl, subset = ['perc not nam'])

count perc_not_nan

smart_1_raw 1.09751e+07 100
smart_2_raw 3.02845e+06 275938
smart_3_raw 1.09663e+07 99,9199
smart_4_raw 1.09663e+07 9991499
smart_5_raw 1.09663e+07 99,9199
smart_7_raw 1.09663e+07 9991499
smart_8_raw 3.02845e+06 275838

Between the heatmap and the information in the count_df dataframe, many of the useless

columns of the dataset became apparent. From this dataframe, a list was created for the

16

completely empty columns and then another for the columns with less than 80% of filled values.

empty columns = []
columns to examine = []
for row in count df.iterrows():
if row[l][0] = 0.0:
empty columns.append (row[0])

elif row[1][0] < (0.8 * n rows):
columns to examine.append (row[0])

Using this list, all columns made up of exclusively NaN values were dropped.

before mem = df.memory usage (deep=True) .sum()

df.drop (empty columns, axis=1, inplace=True)

after mem = df .memory usage (deep=True) .sum/()

memory saved = before mem - after mem

print ("Memory saved on empty column remowal: " + Y
str({np.around { (memory saved J 1024 ** 2y 2)) + "MB"™)

Memory saved on empty column removal: B837.33MB

In order to determine the appropriate summary statistic to use for filling in the NaN values for

each SMART column, the non-NaN values were graphed to examine their distribution.

fig, axes = plt.subplots(7, &, figsize = (30, 40))

=

row =

=

col =

for df col in ['smart 1 raw', 'smart 2 raw', 'smart 3 raw', 'smart 4 raw',
'smart 5 _raw', 'smart 7 raw', 'smart 8 raw', 'smart 9 raw',
‘smart 10 raw', 'smart 11 raw', 'smart 12 raw', 'smart 16 raw',
'smart 17 raw', 'smart 18 raw', 'smart 22 raw', 'smart 23 raw',
'smart 24 raw', 'smart 168 raw', 'smart 170 raw', 'smart 173 raw',
'smart 174 raw', 'smart 177 raw', 'smart 183 raw', 'smart 184 raw’,
'smart 187 raw', 'smart 188 raw', 'smart 188 raw', 'smart 180 raw',
'smart 191 raw', 'smart 192 raw', ‘smart 183 raw', 'smart 184 raw®,
'smart 195 raw', 'smart 19¢ raw', 'smart 197 raw', 'smart 198 raw',
'smart 198 raw', 'smart 200 raw', 'smart 218 raw', 'smart 220 raw',
'smart 222 raw', 'smart 223 raw', "smart 224 raw', 'smart 223 raw',
'smart 226 raw', 'smart 231 raw', 'smart 232 raw', 'smart 233 raw',
'smart 235 raw', 'smart 240 raw', 'smart 241 raw', 'smart 242 raw',
'smart 234 raw']:

if col = &
row += 1
caol = 0

sns.distplot (df[df col], ax = axes[row, col], A
kde = False, norm hist = False)

col += 1

axes[6, 5].=set_axis off()
axes[6, 6].set axis off()
axes[6, 7].=et axis off()

plt.subplots adjust(top = 0.80)

fig.suptitle ("Distribution of Raw SMART Values", fontsize = 96, y =
fig.=avefig("Charts/SMART Distributions.=zvg")
fig.savefig{"Charts/SMART Distributions.png")

(==}

.895)

18

Distribution of Raw SMART Values

The process of filling in the NaN values began with ordering the columns in order from
the lowest amount of missing values to the highest amount. Doing so revealed groups of columns
with the same amount of missing values made up of the same models of drives. The first five
mostly complete columns all had two NaN values, which were the result of two rows that had no
raw smart values at all. Both drives failed, making them quite important for predicting future
failure. However, the lack of data made them useless for predicting future failure in their current

form.

The most likely scenario is that both drives failed just before the diagnostics were

collected. As such, these two rows were deleted and their associated row for the date before their

19

marked failures were updated to have failed that day instead. This kept two of the extremely
imbalanced minority class rows in the dataset while also making the least amount of
assumptions. Presumably, the previous day for the same drives as determined by serial_number
and date had the most pertinent information in their SMART values for the failure instances.
Once the previous date rows for those drives had their failure value changed, the empty rows

were dropped.

df.loc[df['smart 1 raw'].isnull() & df['smart 192 raw'].isnull() & kY
df ['smart 8 raw'].ismumll() & df['smart 12 raw'].isoull() & N
df ['smart 184 raw'].isoull ()]

date serial_number model failure smart_1_raw smart_2_raw smart_3 raw
4632946 11-10 ZINOODR4 ST12000MMO00T 1 MaM Mam Mam
4797700 11-1 ZHZ3M097 ST12000MMO003 1 Mam Mam Mam

2 rows = 59 columns

< >
df . loc[{(df["serial number'] = 'ZJVO0DR4') & (df['date'] = '11-08')]

date serial_number model failure smart_1_raw smart_2_raw smart_3_raw
45141289 11-09 ZNOODR4 ST12000MMO00T 0 118859320.0 Mah 0.0

1 rows = 59 columns

< >

df.at[4514188, "failure'] =1
df.iloc[4514189]

20

df.loc[(df['serial number'] = "ZHZ3M097') & (df['date'] = '11-10'})]
date serial_number model failure smart_1_raw smart_2_raw smart_3_raw
4678156 11-10 ZHZ3M097 ST12000MMO005 0 1896597768.0 Mah 0.0

1 rows = 59 columns
< >
df.at[4678156, 'failure'] =1

df.iloc[4678156]

df.drop (df.index[[4797700, 4632%846]], inplace = True)

The second grouping of columns smart_3_raw, smart_4_raw, smart_5 raw,
smart_7_raw, smart_10_raw, smart_197 raw, smart_198 raw, and smart_199 raw all had 8794
values missing and were found to be the same 8794 rows. These rows were made up of 3

capacity variations of the same model made by Seagate.

df 8784 = df.loc[df["smart 3 raw'].isnull() & df['smart 4 raw'].isnull({) & \
df['smart 5 raw'].isnull() & df['smart 7 raw'].isnull() & \
0 raw'].isnull{) & df['smart 1897 raw'].isnull({) & Y

di['smart 1 .
df['smart 198 raw'].isnull{) & df["smart 1989 raw'].isnull ()]

df 8784 ['manufacturer'].value counts ()

Seagate g7492
Name: manufacturer, dtype: inted

df 87894['model'].value counts ()

Zn250CcMi100oz 6E44
Zn500cCcMi100n0z 1583
ZR2000CcM10002 335

MName: model, dtbype: inted

df B784['capacity TB'].value counts()

0.25 6844
0.50 13583
2.00 335

Name: capacity TB, dtype: inted

df B784['failure'].value counts ()

0 8792
Name: failure, dtype: inte4d

The means and medians, based on the non-missing column distribution, from the same

21

manufacturer and the models' respective capacity TB categories if available, were used to fill the

SMART columns’ missing values. For each of the columns smart_3_raw, smart_4_raw,
smart_5 raw, smart_7_raw, smart_197 raw, smart_198 raw, and smart_199 raw the
availability of each respective drive capacity value within the matching manufacturer value

subset was checked. In each case, only the 0.50 capacity_TB value had matching drives to use

for a more specialized summary statistic.

df.loc[{(df["manufacturer'] =— "Seagate
(df["capacity TE'] = 0.23)]["smart 3 raw']

Serie=([], Name: smart 3 raw, dtype: floatéd)

") & (df['smart 3 raw'].notnull()) & LY

22

df.loc[{df['manufacturer'] = "Seagate") & (df['smart 3 raw'].notnull()) & L
(df["capacity TB'] = 0.50)]['smart 3 raw']
134 Q.o
246 2044 .0
T14 0.0
1006 19g849.0
1502 1801.0
10874512 0.0
10974685 0.0
10974768 0.0
10974840 0.0
10974960 0.0

Name: smart 3 raw, Length: Tl1le3, dtype: flcated

df.loc[{df['manufacturer'] = "Seagate") & (df['smart 3 raw'].notnull()) & L
(df["capacity TB'] = 2.00)]['smart 3 raw']

Series([], Wame: smart 3 raw, dtype: floatgd)

With this knowledge, the distributions of the available capacity TB value and of the

general matching manufacturer, Seagate, were graphed for each column to determine whether the

mean or median should be used to fill the missing values for the two subsets of rows.

sn=.distplot (df.loc[(df['manufacturer'] = "Seagate") & \

(df['smart 3 raw'].notnull{)) & Ay
(df['capacity TB'] = 0.50)]['"smart 3 raw'])

<matplotlib.axes. subplots.hxesSubplot at Oxlebel8E8ci44E>

0.00200

000175

000150

000125

000100

000075

000050

000025

000000

2000

4000 G000 BO00 10000
smart_3_raw

23

sn=.distplot (df.loc[(df['manufacturer'] = "Seagate™) & \
(df['smart 3 raw'].notnull())]["smart 3 raw'], kde = False)

< >

<matplotlib.axe=s. subplots.kxesSubplot at OxltbaT4eddcE>

BOO0000
TOO000D
GO00000
000000
4000000
000000
2000000
1000000

1]

a 2000 4000 a000 B0
smart_3_raw

In the cases of smart_3_raw, smart_5 raw, smart_7_raw, smart_197_raw, smart_198 raw, and
smart_199 raw, the two distributions were quite non-normal, and the median was chosen to fill
missing values with. The two distributions for smart_4 raw were much closer to normal

distributions and the mean was chosen for it.

smart 3 median specialized = df.loc[(df['manufacturer'] — "Seagate”) & \
(df['smart 3 raw'].notnull()) & \
(df ['capacity TB'] = 0.30)]['smart 3 raw'].median()

smart 3 median specialized

1816.0

smart 3 median = df.loc[{df['manufacturer'] — "Seagate") & \
(df["smart 3 raw'].notnull(})]['smart 3 raw'].medianf{)
smart 3 median

0.0

These summary statistics values were then used to fill the missing values in each column,

resulting in 0 NaN values.

24

Use the median to fill the capacity category that can b
df.loc[(df['smart 3 raw'].isnull{)) & \

(df['capacity TB'] = 0.50), 'smart 3 raw'] = smart 3 median specialized
< >
Use the median to f£fill the capacity categories that canncot be calculated
df.loc[df["zmart 3 raw'].isnull{), "smart 3 raw'] = smart 3 median

df['smart 3 raw'].isznull().sum()

0

For the smart_10_raw missing values, the median of the same manufacturer drives was
used for all drive capacity_TB categories as all Seagate drives only had 0.0 as their value for the
column. This means that a subset could not be given a more specialized summary statistic for

filling its missing values as in the other columns in the same group.

df.loc[(df["manufacturer'] = "Seagate") & \
(df["smart 10 raw'].notnull())}]['smart 10 raw'].value counts ()

0.0 7857763
Name: smart 10 raw, dtype: inté4d

smart 10 median = df.lec[(df['manufacturer'] — "Seagate™) & \
(dE['smart 10 raw'].notnull({)})}]['smart 10 raw'].median()

smart 10 median

0.0

'smart 10 raw'] = smart 10 median

df.loc[df['smart 10 raw'].isnullf(), |

df['smart 10 raw'].isnull () .sum()

0

The smart_193 raw column was a different problem than the last group of columns. This
group had 53985 rows with NaN values, which was still low enough in this large dataset to fill
values without major effects on the statistics of the data. An important note here is that some

manufacturers use different SMART attributes to represent the same information. Most Seagate

25

and some Western Digital and Hitachi drives use 225 rather than 193 to store the Load/Unload
Cycle Count value (Acronis, Knowledge Base 9128; Acronis, Knowledge Base 9152). In this

dataset no row had both 193 and 225 values.

df.loc[({df['smart 193 raw'].notnull()}) & kY

(df["smart 225 raw'].notoull ()}][['smart 183 raw', 'smart 225 raw']]

smart_193_raw smart_225 raw

df 183 = df . loc[df['smart 193 raw'].ismmll(}]
The only rows that did not have either value were the exact same rows that made up the last

group of columns.

df 183.1loc[(df 193['smart 183 raw'].isnull()) & \
(df 183['smart 225 raw'].isnull{))]['model’'].value counts()

Zn250cM10002 6B844
Zn300cM10002 1583
Z22000cM10002 335

The 45193 other rows were filled by combining the two columns that represent the same

information into a new smart_193 225 column.
df['smart 183 225'] = df['smart 193 raw']

df['smart 183 225'].fillna(df['smart 225 raw'], inplace

= True})
df[['smart 183 raw', 'smart 225 raw', 'smart 183 225']].ismna() .sum()
smart 193 raw 53985
smart 225 raw 105928818
smart 193 225 BTS2

dtype: inte4d

df .drop (["smart 193 raw’',

'smart 225 raw'], axis=1, inplace=True)

26

As the 8792 rows missing from the new smart_193 225 column are the same rows from the first
grouping of NaN columns, the same approach was taken to fill their missing values. As the
distributions were not normal, the median was chosen for this column. The median of the
available 0.50 capacity TB drives was calculated and the median of all drives of the same

manufacturer was calculated for the drives of other capacities.

df.loc[(df["manufacturer'] = "Seagate") & %
(df['smart 183 225'].notnull()) & Y
(df['capacity TE'] = 0.23)]['smart 183 225']

Series([], Wame: smart 193 225, dtype: floatcd)

df.loc[(df['manufacturer'] = "Seagate") &)\
(df["smart 183 225'].notoull()) & \
(df["capacity TB'] = 0.30)]['smart 183 225°"]

134 266.0

246 310513.0

714 g2.0

1006 T2805.0

1502 T2944 .0

10974512 631.0

109746E5 27.0

10974760 27.0

10974840 159.0

10974960 13.0

Name: smart 183 225, Length: 71163, dtype: floated

df.loc[(df["manufacturer'] = "Seagate™) & \
(df["smart 193 225'].notnull()) & LY
(df["capacity TB'] = 2.00)]['=mart 183 225']

Series([], Wame: smart 193 225, dtype: floated)

27

sn=.distplot (df.loc[(df['manufacturer'] = "Seagate™) & \
(df['=smart 183 225'].notnull()) & kY
(df['capacity TB'] = 0.50)]['smart 183 225'])

<matplotlib.axe=s. subplots.kxesSubplot at Oxleclbalad4BE>

0.000010

0.000008

0000006

0.000004

0.000002

0.000000 =
1] B00000 000000 1500000 2000000 2500000

smart_193_225

sn=.distplot (df. loc[(df['manufacturer'] = "Seagate™) & \
(df["smart 193 225'] .notnull{})] ['smart 1893 225'])

<matplotlib.axes. subplots.hxesSubplot at 0xléabtZdladfx

00000200

Q0000175

00000150

Q0000125

Q0000100

00000075

Q0000050

Q0000025

00000000 }L"’-

a S00000 1000000 1500000 2000000 2500000
smart_193_225
smart 193 225 median specialized = df.loc[(df['manufacturer'] = "Seagate") &

(df['smart 1893 225'].notnull{)) & \
(df['capacity TB'] = 0.20)]['=smart 183 225'] .median()

smart 193 225 median specialized

80136.0

28

smart 193 235 median = df.loc[(df['manufacturer'] = "Seagate") & \
(df['smart 193 225'].notnull{))]['smart 183 225'].median()
smart 193 225 median

3e04.0

The missing values were then filled with the medians for each subset.

Use the mediar

df . loc[(df['smart 183 225
(df[" Fapac_tl_;B'] 0.30), 'sra"t 183 223'] = kLY
smart 183 225 median specialized

"] 1 £:77 +h -
Use the w':j an to _a.'a'. L& CE

df . loc[df['smart 183 225'].i=nu

e +h o= S - 3
Egories Lidlk cﬂla.l.a.ﬂl.r e CE;.CL.;._.. unj
- ']

= smart 183 225 median

=

df['smart 193 225'].isnull().sum()

0

The remaining columns with NaN values each had over 2 million missing values. The
columns smart_240 _raw, smart_241 raw, smart_242_raw, smart_187_raw, smart_188 raw, and
smart_190_raw had over 70% of their values filled. This amount was the decided cutoff for

filling missing values with summary statistics.

Notably, none of the HGST drives had a value for the smart_240 raw column, and none
of the Toshiba drives had values for the smart_241 raw and smart_242_raw columns. As such,
specialized summary statistics could not be calculated for each subset of drives by manufacturer
as in the previous cases. The means of all available rows for each column were used to fill the

missing values.

df . loc[df['smart 240 raw'].notnull{)]['manufacturer'].value counts()

Seagate 7912570
Toshiba 322722
Western Digital 6367
HGST 0

MName: manufacturer, dtype: intod

29

df.loc[df['smart 241 raw'].notnull()]['manufacturer'].value counts()

Seagate 7021362
HGST 143520
Western Digital g12
Toshiba 0

Name: manufacturer, dtype: inted

df .loc[df["smart 242 raw'].nmotnull{)]['manufacturer'].value counts()

Seagate T821362
HGST 143520
Western Digital g12
Toshika 0

Name: manufacturer, dtype: inted

smart 240 mean = df.loc[df['smart 240 raw'].notoull()]['smart 240 raw'].mean()
smart 240 mean

19479,.B88113340185
df['smart 240 raw'].fillna(smart 240 mean, inplace = True)

df['smart 240 raw'].isnull().sum()

0

smart 241 mean = df.loc[df['smart 241 raw'].notnull()]['smart 241 raw'].mean()
smart 241 mean

S53Ze0E820037.0912384
di['smart 241 raw'].fillna(smart 241 mean, inplace = True)

df['smart 241 raw'].isnull().sum()

0

smart 242 mean = df.loc[df['smart 242 raw'].notnull()]['smart 242 raw'].mean/()
smart 242 mean

140094512785, 44415
df["smart 242 raw'].fillna(smart 242 mean, inplace = True)

df["smart 242 raw'].isnull({).sum()

0

The group of the smart_187 raw, smart_188 raw, and smart_190_raw columns were
divided by manufacturer, with all Seagate drives having the values and none of the other drive

manufacturers having the values.

df.loc[df['smart 187 raw'].notnull()]['manufacturer'].value counts()
Seagate 7912570
Western Digital 0
Toshiba 0
HGST 0

Name: manufacturer, dtype: inted

df .loc[df["smart 18E raw'].notnull()]['manufacturer'].value counts()
Seagate 7912570
Western Digital 0
Toshiba 4]
HEST 0

Name: manufacturer, dtype: inted

df . loc[df["smart 190 raw'].notnull()]['manufacturer'].value counts()

Seagate T912570
Western Digital 0
Toshika 0
HGST 0

MName: manufacturer, dtype: inted

Given the split across manufacturers, specialized summary statistics could not be calculated for
each subset of drives by manufacturer as in the earlier cases. Based on the distributions of the 3
columns, the median was chosen to fill missing values for smart_187 raw and smart_188 raw,

while the mean was selected for the smart_190 raw column.

30

sns.distplot (df.loc[df['smart 187 raw'].notnull()]['smart 187 raw'], Y
kde = False)

<matplotlib.axes. subplots.BAxesSubplot at Oxl6abbc04388>

000000
TOO0O00
G000000
A000000
4000000
2000000
2000000

1000000

a
a 10000 20000 30000 40000 0000 0000

smart_187_raw

sns.distplot (df.loc[df['smart 188 raw'].notnull()}]['smart 188 raw'], \
kde = False)

<matplotlib.axes. subplots.AxesSubplot at 0xl6clbdc4T08>

EQ0OO0D
TOO0000
G000000
A000000
4000000
2000000
2000000

000000

a
a 1 2 3 4 5 L]

smart_188_raw Teli

sns.distplot{df.loc[df['smart 190 raw'].notnull()]['smart 180 raw']}

<matplotlib.axes. subplots.kxesSubplot at Oxlecli&9eclE>

a10
0.08
Q.06
004

002

.00

amart_190_raw

32

smart 187 median = df.loc[df['smart 187 raw'].notnull{)}]['smart 187 raw'].media
smart 187 median

< >
Q.0

df['smart 187 raw'].fillna(smart 187 median, inplace = True)
df['smart 187 raw'].isnull().sum()

0

smart 188 median = df.loc[df['smart 188 raw'].notnull{)]['smart 188 raw'].media

smart 188 median

£ >
0.0

df['smart 188 raw'].fillna(smart 188 median, inplace = True)
df['smart 188 raw'].isnull().sum()

Q

smart 190 mean = df.loc[df['smart 190 raw'].notnull{)]['smart 180 raw'].mean ()

smart 190 mean

2B.22T72295853306E3
df['smart 180 raw'].fillna{smart 190 mean, inplace = True)

df['smart 180 raw'].isonull({).sum()

0
The remaining 32 columns have over 30% of their values missing, and an individualized
approach was taken with each of them. In some cases, categories of existing values were used to
preserve some of the information with NaN values being their own category. In many cases,
there was too little data or variance for the column to be useful in the analysis.
The smart_195 raw, smart_189 raw, and smart_183_raw columns had extremely little

difference in distributions between failure and non-failure instances, and only had values on

33

some Seagate drives. To avoid collinearity with the manufacturer column for little predictive
benefit, the columns were dropped.

5 raw'])

sn=s.distplot (df.loc[df['failure"]
sn=s.distplot (df.loc[df['failure"]
plt.grid(True)

plt.title ("smart 185 raw Distribution by Failure™)
plt.legend{["Not Failed", "Failed"])

0]["smart 1

1]1["smart 195 raw'])

g
g

<matplotlik.legend.Legend at Ox1721BB9Bf08>

1e-0 smart_195_raw Distribution by Failure

L]
Mot Failed
Failed

]

) s

3

2

1

4]

-0.5 0o 05 1.0 1.5 20 25 30
smart_195_raw 1=8

df.loc[df['smart 195 raw'].notnull()]['manufacturer'].value counts()

Seagate 616BE04G
Name: manufacturer, dtype: inted

df .drop (["smart 195 raw'], axis=1, inplace=True)

Many of the columns had less than 2% of their values filled in and had no failure
instances. Failing to have instances in both classes renders any predictive power the columns
may have had useless, and as such these columns were dropped. The columns in this group were
smart_233_raw, smart_235_raw, smart_232_raw, smart_168 raw, smart_170_raw,
smart_218 raw, smart_174 raw, smart_16 _raw, smart_17 raw, smart_173_raw,

smart_231 raw, and smart_177_raw.

34

sn=.distplot (df.loc[df['smart 233 raw'].notnull()]['smart 233 raw'])

<matplotlib.axe=s. subplots.kxesSubplot at OxlceB&f81fEE>

000020
000015
000010
000005
000000
0 000 10000 15000 20000 25000
smart_233_raw
df . loc[{(df["smart 233 raw'] .notmull({)) & (df['failure'] = 1}]

date serial_number model failure smart_1_raw smart_3 raw smart_4 raw smart_5 raw sm

0 rows = 48 columns

< >

df . loc[df['smart 233 raw'].notnull ()]['manufacturer'].value counts()

Seagate 8782
Western Digital Q
Toshiba 0
HGST Q

MName: manufacturer, dtype: intea4d
df .drop (["smart 233 raw'], axis=1, inplace=True)

Several of the columns did have instances of failures and non-failures but had no variance
in the values and as such were dropped. Without variance, no distinction exists between failure
and non-failure, making the columns useless for analysis and prediction. The columns in this

group were smart_18_raw, smart_224 raw, smart_23_raw, smart_24 raw, and smart_254_raw.

35

sn=.distplot (df.loc[df['smart 18 raw'].notnull{)]['smart 18 raw'], kde = False)
£ >

<matplotlib.axe=s. subplots.kxesSubplot at Oxldd4ellbl0E>

00000
250000
200000
150000
100000
0000
0
0.4 0.2 oo 02 04
smart_18_raw
df['smart 18 raw'].value counts()

0.0 323114
Name: smart 18 raw, dtype: intéed
df . loc[df['failure'] = 1]['smart 18 raw'].value counts()

0.0 10
Name: smart 18 raw, dtype: inted

df . loc[df['smart 18 raw'].notmull(}] ['manufacturer'].value counts()
Seagate 323114
Western Digital Q
Toshika 0
HGST a

Wame: manufacturer, dtype: inted
df.drop(['smart 18 raw'], axis=1, inplace=True)

The smart_22_raw column is quite different from the other types of SMART values as it
is an indication of helium levels encased in certain HGST drives (Klein, 2015). Given this, it

would have made no sense to fill this column's NaN values in rows of drives from other

manufacturers. Beyond that, the dataset did not have any failures with abnormal levels in this

36

column, making this column potentially a negative impact to the real-world effectiveness of a
predictive model. Given this risk, the purpose of the value, and the risk of collinearity with the

manufacturer column, this column was dropped from the dataset.

sn=.distplot(df.loc[df['failure"'] = 0]['smart 22 raw'], kde = False)
sna.distplot (df.loc[df['failure'] = 1]['smart 22 raw'], kde = False)
plt.grid(True)

plt.title ("smart 22 raw Distribution by Failure")

plt.legend{["Hot Failed", "Failed"])
<matplotlik.legend.Legend at Oxd6d43el3ealbs

smart_22_raw Distribution by Failure

1200000 Mot Failed
Failed

1000000
EOO000
GO0000
400000

200000

i ¥] Fit] D o 100
smart_22_raw

df .loc[df['failure'] = 1] ['smart 22 raw'].value counts()

100.0 10
Name: smart 22 raw, dtype: inté4d

df . loc[df["smart 22 raw'].notnull(}] ['manufacturer'].value counts()

HGST 1233138
MName: manufacturer, dtype: inted

df.drop(['smart 22 raw'], axis=1, inplace=True)

The smart_184 raw column was another unique column as it had very few values other
than zero, but half of the non-zero values were instances of failure. To preserve this information

despite most of the values being NaN values, a new Boolean column was created where 0 or

NaN values were false and non-zero values were true. The original column was then dropped

from the dataset.

sns.distplot(df.loc[df['failure'] = 0] ['=mart 184 raw'], kde
sns.distplot {df.loc[df['failure'] = 1]['"smart 184 raw'], kde
plt.grid(True)

plt.title("smart 184 raw Distribution by Failure™)
plt.legend{["Hot Failed", "Failed"])

False)
False)

<matplotlik.legend.Legend at Oxlecl0B9580E8>

smart_184_raw Distribution by Failure

Mot Failed

4000000 Failed

500000
000000
2500000
2000000
1500000
1000000

S00000

a 2 4 [i] 8
smart_184_raw

df . loc[df['smart 184 raw'].notnull()]['smart 184 raw'].value counts()

0.0 4194080
1.0 2
2.0 3
8.0 1
E.0 1
4.0 1
2.0 1

HName: smart 184 raw, dtype: inthd

37

df.loc[{df['smart 184 raw']

(df["smart 184 raw'].notoull{)})][['smart 184 raw',

smart_184_raw failure

99758
2613651
4849813
5931493
8943626
9066037
9139214
89836420
9961273

10086127
10771703
10896354

di['smart 184 cat'] = 0

8.0
9.0
1.0
2.0
4.0
5.0
5.0
1.0
1.0
1.0
1.0
50

True
True
True
True
False
Falze
True
Falze
False
True
False

False

I=0) &\

df .loc[{df["smart 184 raw'] > 0}, '=mart 184 cat'] =1

'"failure']]

df['smart 184 cat'] = df['smart 184 cat'].astype('category')
df['smart 184 cat'].dtype

CategoricalDtype (categories=[0, 1], ordered=False)

df['smart 184 cat'].wvalue counts()

0 1087350849

1

12

Name: smart 184 cat, dtype: intéd

df['smart 184 cat'].isnull().sum()

0

df .drop (["smart 184 raw'], axis=1, inplace=True)

38

39

The ten columns remaining were smart_191 raw, smart_200_raw, smart_196_raw,
smart_8_raw, smart_2_raw, smart_223 raw, smart_11 raw, smart_220_raw, smart_222_raw,
and smart_226_raw. This group of columns did not have a lack of value variance nor were they
split directly on manufacturer lines, but they still had over 30% of their values missing. Filling in
that large of a proportion of missing values with summary statistics would likely have skewed
the data significantly. To avoid losing all of the information contained in the available data,
categorical columns for each original column were created.

Each categorical column was given 3 possible category values. For each categorical
column, the value of 0 was given to rows that had NaN values, the value of 1 was given to rows
that had a value below the mean of the respective original column, and the value of 2 was given
to rows that had a value above the mean of the respective original column, except in the case of
smart_220_raw where the median was used for these comparison assignments instead. Once the
creation and value assignment of the categorical columns were verified, the original columns

were dropped from the dataset.

sn=.distplot (df.loc[(df['failure'] = 0) & \

(df["=mart 191 raw'] != 0.0)]['smart_191 raw'])
sns.distplot (df.loc[(df['failure'] = 1) & \

(df["=mart 191 raw'] != 0.0)]['smart 191 raw'])

plt.grid(True)

plt.title("smart 191 raw Nonzero Distribution by Failure")
plt.legend(["Not Failed", "Failed"])
<matplotlib.legend.Legend at 0x2638a69f108>

smart_191_raw Nonzero Distribution by Failure

Not Failed

0.00004 Failed

0.00003

Q00002

000001

0.00000 =
i} 1000000 2000000 3000000 4000000 5000000
smart_191_raw

40

df.loc[df['smart 191 raw'].notnull()]['manufacturer'].value counts()
Seagate 42302485
Toshiba 322722
Western Digital 10248

Name: manufacturer, dtype: inted

smart 191 mean = df.loc[df["smart 191 raw'].notnull()]["smart 181 raw'].mean/()
smart 191 mean

14080.159100979688

df['smart 191 cat'] = 0

df.loc[(df['smart 1891 raw'] < smart 191 mean), "smart 191 cat'] 1

.

df loc[(df['smart 1891 raw'] > smart 18] mean), 'smart 181 cat'] = 2

di['smart 181 cat'] = df['smart 181 cat'].astype('category')
di['smart 181 cat'].dtype

CategoricalDtype (categories=[0, 1, 2], crdered=False)

df['smart 191 cat'].value counts ()

0 6402845
1 35363568
2 1008698
Mame: smart 191 cat, dtype: inted

df['smart 181 cat'].isoull().sum()

0

df.drop(['smart 191 raw'], axis=1, inplace=True)

Though the decision and process of NaN value management was the same as the other 7
columns, the 3 columns smart_220 raw, smart_222 raw, and smart_226 raw deserve additional
explanation. These columns were split entirely along manufacturer lines and had large
percentages of missing values but were some of the few predictors available for Toshiba drives.
However, despite the Toshiba drives not having the highest rate of failure among the

manufacturers, these 3 columns were among the highest column correlations to failure in the

entire dataset. These columns were given the same categorical column approach to ensure the

enough predictors existed for the Toshiba drives.

fail df = pd.crosstab(df["manufacturer™], df["failure"])
fail df['Rate'] = fail df[1] / (fail 4f[0] + fail df[1])
fail df

failure False True Rate

manufacturer

HGST 2660507 26 0.000010
Seagate 7965951 606 O0.000076
Toshiba 322682 40 0.000124

Western Digital 25285 6 0.000237

df.loc[df['smart 220 raw'].notnull()]['manufacturer'].value counts()

Tashika 322722
Western Digital 0
Seagate 0
HGST 0

Name: manufacturer, dtype: inted

df[['smart 220 raw', 'failure']].corr()

smart_220_raw failure
smart_220_raw 1.000000 -0.006208
failure -0.006208 1.000000

df.loc[df['smart 222 raw'].notnull()]['manufacturer'].value counts{)

Toshika 322722
Western Digital 0
Seagate 0
HGST 1]

HName: manufacturer, dtype: inted
df[['smart 222 raw', "failure']].corr()

smart_222_raw failure

smart_222_raw 1.000000 0.010691
failure 0.010691 1.000000

df.loc[df['smart 22& raw'].notnull()]['manufacturer'].value counts()

Toshiba 322722
Western Digital 0
Seagate Q
HGST Q

MName: manufacturer, dtype: intod

df[['smart 226 raw', 'failure']].corr()
smart_226_raw failure
smart_226_raw 1.000000 -0.014187
failure -0.014187 1.000000

With this, the number of dimensions in the dataset was reduced to 36 and all values in all

42

columns were filled. The univariate distributions of all columns were plotted together in the form

of histograms for continuous data and countplots for categorical data.

fig, axes = plt.subplots(e, &, figsize = (30, 23))

row =

=

col =

for df ceol in ['date', 'model', 'failure', 'smart 1 raw',
'smart 3 raw', 'smart 4 raw', ‘smart 3 raw', 'smart 7 raw’',
'smart 9 raw', 'smart 10 raw', 'smart 12 raw', 'smart 187 raw',
'smart 188 raw', 'smart 190 raw', 'smart 192 raw', 'smart 194 raw',
'smart 197 raw', 'smart 198 raw', 'smart 1989 raw', 'smart 240 raw',
'smart 241 raw', 'smart 242 raw', 'manufacturer', 'capacity TB',
'smart 193 225", 'smart 191 cat', 'smart 184 cat', ‘smart 200 cat',
'smart 196 cat', 'smart & cat', "smart 2 cat', 'smart 223 cat’',
'smart 220 cat', 'smart 222 cat', 'smart 226 cat', 'smart 11 cat']:

if col = &:
row += 1
col = 0

Histograms
if df[df col].dtype.name =— "floatéd':
if df col in ['=mart 1 raw', 'smart 3 raw', ‘"smart 4 raw',
'smart 5 raw', "smart 7 raw', 'smart 10 raw',
'smart 12 raw', 'smart 187 raw', ‘smart 188 raw',
'smart 192 raw', 'smart 197 raw', 'smart 198 raw',
'smart 189 raw', 'smart 242 raw', 'smart 1893 225']:
ax = sns.distplot(df[df col], ax = axe=s[row, col], kde = False)
ax.set_yscale('log')

else:
ax = sns.distplot(df[df col], ax = axes[row, col], kde = False)

Countplots

elif df[df col].dtype.name — 'category' eor \
df [df col].dtype.name =— 'bool':
if df col = "date":

ax = sns.countplot(df[df col], ax = axes[row, col])
ax.set (xticklabels = []})

elif df col =— "model™:
ax = sns.countplot(df[df col], ax = axes[row, col])
ax.set(xticklabels = [1)
ax.set_yscale('log')

elif df col in ['smart 184 cat', 'smart 11 cat']:
ax = sns.countplot(df[df col], ax = axes[row, col])
ax.set_yscale('log')

el=e:
sns.countplot (Af[df col], ax = axe=s[row, col])

else:
print {("Unknown column dtype")

col += 1

plt.subplots_adjust(top = 0.90)

fig.suptitle("Distribution of Dataframe Columns", fontsize = 34, y = 0.83)
fig.savefig("Charts/Dataframe Distributions.=zwvg")
fig.savefig("Charts/Dataframe Distributions.png")

Dlstrlbutlon of Dataframe Columns

44

At this point in the project, the quantitative column correlation coefficients and the
qualitative columns contingency tables were created. Before factor analysis and model creation
could occur, one last series of data preparation had to occur. The dataset then prepared through
standardization and normalization, as well as the test, train, and validation splits occurring then.
Doing these before the PCA ensures that no data is contaminated with the influence of the testing
and validation data. Additionally, this must occur before SMOTE or any other oversampling
technique can be performed. At this point, the date and serial_number columns were also

dropped as identification columns were no longer needed.

from sklearn import preprocessing
from sklearn.model selection import train test split

y df = df['failure’]

x df = df.drop('failure', axis = 1)

x df.drop{["date', 'serial number'], axis = 1, inplace = True)
del df

The first split is 80% Train and 20% Test, stratified on the y_df / failure series. Using stratified
sampling ensures that there is an evenly distributed proportion of minority classes in the training,
testing, and validation datasets despite the extreme imbalance of the minority class from the

rarity of hard drive failure.

X train, x test, y train, y test = train test split(x df, ¥y df, \

L]

test size = 0.2, random state = 13, stratify = y df)
Verify the stratified splitting.

y train.value counts()

False B7T79546
True 242
Mame: failure, dtype: inted

45

¥ _train.value counts() [1] ! ¥ _train.value counts() [0]

6.1734390847805957e-05

¥_test.value counts()

False 21094887
True 13s
Name: failure, dtype: inted

The ratios between the minority and majority classes are calculated for each dataset split to
ensure that the stratified random sampling functioned properly. Although the ratios are not equal,
the sampling selected the closest ratio mathematically possible.

v _test.value counts() [1] ! ¥ test.value counts() [0]

6.196218757503233e-05

(v _test.wvalue counts({)[1l] - 1)} ! ¥ _test.value counts() [0]

6.150658325462768e-05

(v test.wvalue counts()[1] + 1) ! y test.value counts()[0]

6.2417791688543698=-05

The second split is 87.5% Train and 12.5% Validation, stratified on the y_df / failure

series, to result in 70% Train and 10% Validation overall.

x train, x valid, y train, y valid = train test split(x train, y trainm, A

=

test size = 0.125, random state = 13, stratify = ¥ train)

¥ _train.value counts()

False TeB2103
True 474
Name: failure, dtype: inted

¥ _train.value counts() [1] ! ¥ _train.value counts() [0]

6.1T018542096028852-05

46

As in the first split between that training and testing datasets, the class ratios between the training

and validation datasets are also examined and found to be accurate.

¥ _walid.value counts()

False 1097443
True 68
Name: failure, dtype: inted

¥ _walid.value counts() [1] ! y valid.value counts() [0]

6.186221580528556e-05

A scaler is created and fit to the training data in order to standardize the quantitative
columns for model training. This avoids any contamination of the training data by ensuring that
the test and validation datasets do not influence the training data at all, as the mean and standard
deviation of the data must be calculated to scale and normalize. The fit scaler can then be used
on the testing and validation datasets. Scikit-learn’s StandardScaler() was selected to produce
standardized and normalized data in the form that models like neural networks need for smooth
training.

cont cols = [

'smart 1 raw', "smart 3 raw', 'smart 4 raw', 'smart 5 raw',

'smart 7 raw', "smart 9 raw', 'smart 10 raw', 'sSmart 12 raw',
'smart 187 raw', 'smart 188 raw', 'smart 190 raw', '"smart 192 raw',
'smart 194 raw', 'smart 187 raw', "smart 199 raw', '"smart 240 raw',
'smart 241 raw', 'smart 242 raw', 'smart 193 225', 'capacity TB'

scaler = preprocessing.StandardScaler()

x train[cont cols] = scaler.fit transform(x train[cont cols])

A mean as close to zero as possible given the dataset and a standard deviation of 1 is a successful

standardization.

47

x train[cont cols].describe ()

smart_1_raw smart_3 raw smart_4 raw smart_5 raw smart_7_raw smart_9 _raw =

count 7.682577e+06 T.682577Ve+06 7V.6B25VVe+06 7V.6825¥7e+06 V.6B825Y¥Te+06 V.BB25V7e+06
mean 6.559957e-17 1.272166e-17 -3.058378e-17 -6.428810e-18 -2783875e-18 -3.50194%9e-17

std 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00

Once proper standardization and normalization is confirmed, the scaler is then used to transform

the quantitative columns of the testing and validation splits.

x test[cont cols] = scaler.transform(x test[cont cols])
x valid[cont cols] = scaler.transform({x walid[cont cols])
Analysis

With all data tidying and preparation complete, the analysis began with calculating the

Pearson correlation coefficients for all quantitative columns.

corr df = df.corr(method = 'pearson')

failure smart_1_raw smart_3 raw smart_4 _raw smart_ 5 raw smart_7_raw

failure 1.000000 0.002200 -1.664119e-04 0.001082 0.044413 0.000082
smart_1_raw 0.002200 1.000000 -23M701e-01 -0.0024732 0.014507 0.008715
smart_3_raw -0.000166 -0.231170 1.000000e+00 0.0070M -0.007325 -0.004563
smart_4_raw 0.001083 -0.008473 7.010971e-03 1.000000 -0.000145 0.000296
smart_5_raw 0.044413 0.014507 -7.325152e-03 -0.000145 1.000000 -0.000127

Preliminary examinations show that smart_197 raw and smart_198 raw have a nearly perfect
degree of collinearity with each other and little in comparison with any other column. In order to

prevent that from affecting the predictive models, the smart_198 raw column was dropped as it

48

has a lower correlation with the dependent variable failure.

di[['smart 187 raw', 'smart 1898 raw', 'failure']].corz()

smart_197_raw smart_198_raw failure

smart_197_raw 1.000000 0.878249 002741

smart_198_raw 09782449 1.000000 0.02087
failure 0.027410 0.020870 1.00000

df .drop('smart 188 raw', axis = 1, inplace = True)

corr df = df.corr{method = 'pearson')

This dataframe is then used to create a heatmap of the column correlations, with the color scale

centered at O for both positive and negative correlations.

fig, ax = plt.subplots(fig=size = (30, 23))

sns.heatmap (
corr df,
ax = ax,
annot = True,
fmt = "_.1%",
vmin = -1, vmax = 1, center = 0,
linewidth=s = 3,
linecolor = "white",
xticklabels = corr df.columns,
yticklabels = corr df.columns,
square = True,
cbar = True

plt.title {("Dataframe Correlation Heatmap"™, fontsize = 54)
fig.savefig{"Charts/Corr Heatmap.svg")
fig.savefig{"Charts/Corr Heatmap.png")

49

Dataframe Correlation Heatmaﬁ
- BEE - EEEEEEEEE A Illl
- IIIIIIIIIIIII II

aaaaaaaaa

Examining the column correlations shows several important details. For potential
predictors for failure, smart_5_raw and smart_197_raw have the highest positive correlations
with failure, at 4.4% and 2.7%. SMART attribute 5 is the reallocated sectors count of drives,
which triggers when a read, write, or verification error occurs (Acronis, Knowledge Base 9105).
SMART attribute 197 is the current pending sector count, which is the count of unstable sectors
that are awaiting remapping (Acronis, Knowledge Base 9133). This value decreases as sectors
are remapped, but the value would remain consistently high if these sectors are unable to be
remapped. Both columns make complete sense as the highest correlation with failure and will

likely be the most important predictor variables for HDD failure.

50

Another prominent feature is smart_9 _raw as the column with the most extreme
correlations with other columns, which is understandable given that SMART attribute 9
represents the total count of hours the drive has been in a power-on state (Acronis, Knowledge
Base 9109). Most other issues worth measuring are likely correlated with the drive age and
amount of operation. This column may also be a powerful predictor within predictive models as
an older drive is more likely to wear down to failure suddenly than a newer drive in general even
if other values are not present. Even if other predictors of failure are present in an instance, a
drive with an average or lower smart_9 raw value may represent a drive that will fail far sooner
than the average length of time to failure.

Other features to note are that the smart_240 _raw column has quite high correlations with
other independent variables and that smart_190 raw and smart_194 raw have a very high degree
of collinearity with each other and little in comparison with any other column. The dataset is
likely large enough to not need to worry about the multicollinearity affecting the predictive
power of the models, but the redundancy of information may skew the results.

After examining the quantitative variables, the qualitative variables were assessed with
Fisher’s exact test. Pearson’s chi-squared was calculated on each for comparison, but the results
cannot be trusted as the data is not normally distributed. Rpy2 was used to load the R.stats
package for Fisher’s exact test, as neither scikit-learn nor scipy have an implementation of
Fisher’s exact test on contingency tables with dimensions greater than 2x2. Specifically, a
contingency table was created for each column through pandas’ crosstab method, and these
contingency tables were passed into a custom function that passes the contingency table into
rpy2, which embeds the R.stats code into the Python process and returns the R.stats Fisher_Test

with Monte Carlo p-value simulation output. The custom function then takes this output and

displays it appropriately in the Jupyter notebook.

import rpyld.robjects.numpy2ri

from rpy2.robjects.packages import importr
import rpy2.robjects as ro

rpy2.robjects. numpyZri.activate ()

rstats = importr('stats')

Display the formatted resuvlts of the R stats Fisher Test,

vsing Monte Carle Simunlation
def r fisher output(dataframe):
results = rstats.fisher test(dataframe.to numpy (), L
simulate p value = True)

Convert the listvector cobject returned from R stats to

a list of string values

d = [key + " " + str({results.rx2(key)[0]) for key in results.names]
dd = [

d2.append ("".join{i.replace ("\t", "").=splitline=()}))

Replicate the tabluar data formatting

for line in d2Z:

if len(line.split (" ") [0]) < 8:
print(line.replace{™ ", "\t\t"})
el=e:
print{line.replace(" ", "))

manufacturer contingency = pd.crosstab({df['manufacturer'], df['failure'])

manufacturer contingency

failure False True

manufacturer

HGST 2660507 26
Seagate 7965949 GO6
Toshiba 322682 40

Western Digital 252495 G

51

52

r fisher output(manufacturer contingency)

p-value 0.0004897501248375312

alternative two.sided

method Fisher's Exact Test for Count Data with simulated p-value (b
ased on 2000 replicates)

data.namel structure (c(2660507L, 7965949L, 322682L, 25293L, 26L, 60aL,
40L,

data.namel 6L}, .Dim = c(4L, 2L})

All columns were found to be significant, but smart_184 cat had the absolute lowest p-

value at 5.0214144599400225¢e-23.

r fisher output(smart 184 contingency)

E-value 5.0214144598400225e-23

conf.int 4201.02560410217235

eztimate 16382 . 987859030574

null.value 1.0

alternative two.=sided

method Fisher's Exact Test for Count Data

data.name structure (c(10874427L, 6L, 672L, 6L}, .Dim = c{2L, 2L}}

As all were found to be significant, no columns were dropped to reduce dimensionality here.
Principal Component Analysis (PCA) is used for dimensionality reduction instead. However, the
model column was dropped as its contingency table was shown to be very sparsely filled and it

had redundant information with the manufacturer column.
df.drop ('model', axis = 1, inplace = True)

In the same way that the standardization was performed, the PCA was fit to the training
data only. PCA as a form of dimensionality reduction ensures that as little information, in the
form of inertia, is lost as possible for the given number of dimensions reduced. As this dataset is
quite large, any amount of dimensionality reduction greatly affects the speed and chance of
proper convergence in predictive models. This first PCA was created with a number of
components equal to the number of the quantitative columns to examine the inertia explained in

the dataset in order to determine the appropriate number of dimensions to use.

import prince

pca = prince.PCA(
n components = len{cont cols),
n iter = 3 ,
copy = True,
check input = True,
random state = 13

pca = pca.fit({x train[cont cols])

ax = pca.plot row _coordinates|
x _train[cont_cols],
ax = None,
figsize = (&, &),
x_component = 0,
¥_component = 1

No .svg file will be saved for this plot as it takes up
1.07 GB (1,158,481,389 bytes}.
#plt.savefig("Charts/PCA.svg")
plt.zavefig("Charts/PCL.png")

Fow principal coordinates

= b
20
[]
_ *
o
.E 15 .
3 []
g e
=
=10
T
T
g
E
a
o 10 20 30 40

Component 0 (16.17% inertia)

53

The influence of each column on each principal component was then examined by creating a

heatmap from a dataframe formed on the information.

pca_results df = pca.column correlations(x train[cont cols])

fig, ax = plt.subplots(fig=size = (30, 23))

sns.heatmap
pca_results df,
ax = ax,
annot = True,
fmt = ".1%",
vmin = -1, vmax = 1, center = 0,
linewidths = 3,
linecolor = "white",
xticklabels = pca results df.columns,
yticklabels = pca results df.index,
square = True,
cbar = True

}

plt.title ("PCR Results Heatmap", fontsize = 34}
plt.savefig("Charts/PCR Heatmap.=svg")
plt.savefig("Charts/PCA Heatmap.png")

PCA Results Heat
o B e]
‘‘‘‘‘‘ =B
‘‘‘‘‘ BE BT BEEE B BRRRn

lﬂllllllll

m

B B Do
R

55

As these correlations are spread out well over the heatmap nothing else needed to be done with
it. The eigenvalues and explained inertia were used to create a scree plot, and this plot was used
alongside the cumulative inertia to determine that 13 principal components was the appropriate
amount of dimensionality reduction to use as these components made up 82.37% of the inertia of

the dataset in only 13 out of the 20, or 65%, of the total components.

pca eigenvalues = pca.eigenvalues

pca eigenvalues pca.explained inertia
[24B43308.51, [0.161eEe0235426EE6E,
131248034.148, 0.0B5448E115E976027,
GT758E841.017, 0.06351280096E25T833,
BB260913.796, 0.057447T103272454E,
Ee26TE3. 63, 0.05614511673603315,
B304944.847, 0.0540505148658E05E,
TO9ZeeEE.TE4L, 0.05153B873633448E725,
TT444885, 316, 0.05040823293370864,
TeBOeZ2E. 560, 0.0500458032548445,
TeTOo7Z, 360, 0.040088304845409808215,
TeTl021.412, 0.0408024793540325549,
T440170.605, 0.048422362736811431,
6817334.230, 0.04501962152457163,
6736046.07E, 0.043839756350902524,
£305419.9, 0.0416228B1ET7T6297T05,
6110364.178, 0.039767672E64061E26,
4819609E.087, 0.0313e771741602234,
1720733.771, 0.01119893e056775211,
TO9T7311.7685, 0.00518900064321733E,
S12330.9103] 0.003233436BE860027106]

plt.plot(np.arange (len{cont cols)), pca eigenvalues, 'ro-')

plt.title ("PCA Scree Flot")

plt.xlabel {"Principal Component™)

plt.ylabel {"Eigenvalue™)

plt.xticks(range (0, len(cont cols})))

plt.grid{b = True, which = 'major', color = 'w', linewidth = 1.0)

plt.grid{b = True, which = 'minor', color = 'w', linewidth = 0.3)

plt.=zavefig("Charts/PCA Scree Plot.svg")
plt.=zavefig("Charts/PCA Scree Plot.png")

1eT PCA Scree Plot
25

20

Bgenvalue
—
n

==
[

05

oo
01 2 3 4 5 6 T & 91011 1212 14 15 16 17 18 19

Principal Component
cum_inertia = [0]

for i, e in enumerate (pca eigenvalues):
cum_inertia.append (sum({pca eigenvalues[0:i+1]) /! sum (pca_eigenvalues))

cum inertia

[

-

16168680235,
2471328351,
.3106456448,
.3680832551,
.42423837189,
.4TBZBBE8BRT,
.5298776231,
.5B028385k,

.8303297483,
. 8803127877,
. 7302375813,
. 1778659854,

.B236783738,
.B875183323,
.90081422142,
.948000887,

.980277e044,
.9814765405,
.98%66656311,

[l e O e e O e O i Y i Y i Y i Y i Y e Y e Y i Y e JOY i O i T i O i O i O i T i

[

sum{pca_eigenvalues[0:13]) ! sum(pca_eigenvalues)

0.82367857589

56

57

plt.plot(range (0, len{cum inertia)), cum inertia)
plt.title {"Inertia by Principal Components Eept™)
plt.xlabel {"Number of Principal Components™)

plt.ylabel {"Inertia™)

plt.xticks (range (0, len(cum inertia)})

plt.grid{b=True, which = 'major"', color = "w', linewidth =
plt.grid{b=True, which = "minor', color = 'w', linewidth
plt.zavefig("Charts/PCR Inertia Plot.swvg")
plt.savefig("Charts/PCR Inertia Flot.png")

I
(=T
=1

©n
——

Inertia by Principal Components Kept

a8

0g

nertia

04
02

an

012 3 4 567 8 9 1011213 1415 16 17 18 19 20
Mumber of Principal Components

A new PCA is created with the appropriate number of components and then fit to the training

data.

pca = prince.PCA(
n_components = 13,
n iter = 3,
copy = True,
check input = True,
random state = 13

pca = poa.fit(x train[cont cols])

This PCA is used to transform the quantitative values of the dataframe. The original quantitative
columns are then dropped from the dataframe and the transformed values are merged in with a

pandas join() method.

pca df
pca df

pca.transform({x train[cont cols])
L]

pca df.add prefix('pca component ")

pca df.info()

<class "pandas.core.frame.DataFrame':>
Int6d4Index: TeBEZ577 entrie=s, 3430686 to 9385328
Data column= (total 13 columns):

pca_component 0 floated
pca component 1 floated
pca component 2 floated
pca component 3 floated
pca component 4 floated
pca component 3 floated
pca component & floated
pca component 7 floatad
pca_component B floated
pca component 9 floated

pca component 10 floated
pca component 11 floated
pca component 12 floated
dtypes: floated (13)

memory usage: B20.6 MB

Replace the columns that factored in the PCA with
the reduced-dimension PCA results.

x train.drop(cont cols, axis = 1, inplace = True)

x train = x train.join(pca df)

This process is then repeated with the test and validation datasets.

pca df
pca df

pca.transform(x test[cont cols])
pca df.add prefix('pca component ')

Replace the columns that factored in the PCA with
the reduced-dimension PCA results.

x test.drop(cont cols, axis = 1, inplace = True)

x test = x test.join(pca df)

pca df
pca df

pca.transform(x valid[cont cols])
pca df.add prefix('pca component ')

Replace the columns that factored in the PCA with
the reduced-dimension PCA results.

x valid.drop(cont_cols, axis = 1, inplace = True)

x wvalid = x valid.join(pca df)

59

While Factor Analysis of Mixed Data (FAMD) would have been ideal for dimensionality
reduction in this mixed data, the current hardware requirements and software availability do not
allow for it with such a large dataset.

One last adjustment was needed before training the predictive models as the categorical
variables needed converting into Boolean encodings. Pandas get_dummies() method was used on
the categorical columns of each dataset split to produce dataframes of encoding columns. These
were then joined to the original dataframes of the train, test, and validation datasets after the

original categorical columns were dropped.

cat cols = [

'manufacturer', ‘'smart 181 cat', 'smart 184 cat',
'smart 200 cat', 'smart 186 cat', 'smart B cat',
'smart 2 cat', '"smart 223 cat', 'smart 220 cat',
'smart 222 cat', 'smart 226 cat', 'smart 11 cat'

X train cat = pd.get dummies(x train[cat col=s], \

columns = cat cols, dtype = bool)
X test cat = pd.get dummies(x test[cat cols], \

columns = cat cols, dtype = bool)
x wvalid cat = pd.get dummies(x walid[cat col=s], kY

columns = cat cols, dtype = bool)

Replace the rcategorical columns with their encoded representation columns.

[41]

x test.drop(cat cols, axis = 1, inplace = True)
x test = x test.join(x test cat)

ion columns.

Replace the categeorical columns with their encoded representat
x valid.drop({cat cols, axis = 1, inplace = True)
x valid = x valid.join(x valid cat)

Traditional training would fail as hard drive failure is an extremely rare occurrence. The
model would learn to only predict non-failure, making it useless for predicting failure.
As an illustration to this, a logistic regression model using the sag solver in scikit-learn was

trained on the extremely imbalanced training set and then scored on the test set.

60

from imblearn.over sampling import SMOTE

from sklearn.linear model import LogisticRegression

from sklearn.metrics import confusion matrix, precision score, \
classification report, roc curve, auc

regression = LogisticRegression(solver = 'sag', n jobs = -1}
regression.fit(x train, ¥ train.values.ravel())

As predicted, the model learned the dataset quite well regarding accuracy, in which it attained a

nearly perfect score of the test data.

accuracy = regression.score(x teskt, y test)
accuracy

0.89099375860754078

As predicted as well though, it could not have had worse precision, in which it attained the

lowest possible score of 0.0.

predictions = regression.predict(x test)
actual = y test

confusion = confusion matrix(actual, predictions)
confusion

array([[2194E8&, 11,
[136, 011, dtype=inted)

precision = precision score(actual, predictions)
precision

0.0

Therefore, undersampling the non-failures, oversampling the failures, or a combination of
both will improve the training and production of the predictive models. These methods are
applied to the training data and reduce or eliminate the imbalance ratio for the training period.
This project used Synthetic Minority Oversampling Technique (SMOTE) to synthetically create
failure instances mathematically similar to the actual failures and did so until the imbalance was

eliminated at a 50/50 split between failure and non-failure instances.

61

sm = SMOTE (random state = 13)
x train, y train = sm.fit resample(x train, ¥ train)

v train['failure'].value counts ()

True TeB2103
False TeB2103
MName: failure, dtype: inte4d

With the SMOTE training dataset, a new logistic regression model is trained, using the

LBFGS solver.

regression = LogisticRegression(solver = "lkfgs', \
max iter = 10000, n jobs = 1)

regression.fit(x train, y train.values.ravel()})

LogisticRegression (max iter=10000, n jobs=1)
This model attained a very respectable accuracy but more importantly successfully identified

63.97% of failure instances while only having a false positive rate of 2.75%. SMOTE

significantly improved the models training.

regression accuracy = regression.score (x test, y test)
regression accuracy

0.9731984585127355

regression predictions = regression.predict(x test)
actual = y test

regression confusion = confusion matrix(actual, regression predictions)
regression confusion

array([[213el04a, SBTE1],
[44, 8711, dtype=inta4d)

regression precision = precision score (actual, regression predictions)
regression precision

0.001477882T72066317E87

print{classification report{actual, regression predictions))

precision recall fl-score support

0.0 1.00 0.97 0.99 2194887

1.0 0.00 0.64 0.00 136

accuracy 0.87 2185023
macro avg 0.30 0.81 0.4% 2185023
weighted avg 1.00 0.97 0.499 2195023

The prediction probabilities, false positive and false negative rates, and the AUC were

calculated. By using all of these, an ROC was graphed.

regression probabilities = regression.predict proba(x test)
predictions = regression probabilities[:,1]

regression false positive rate, regression true positive rate, thresheold =%

roc curve(y test, predictions)

regression roc auc = auc(regression false positive rate, Y,
regression true positive rate)
regression roc auc

0.87291159354605094

62

'blue',

plt.title ("LBFGS Logistic Regression Receiver Operating Characteristic Curve')
plt.plot(regression false positive rate, regression true positive rate,

label = 'AUC = %0.2f"' % regression_roc_auc)
plt.legend{loc = 'lower right')

plt.plot ([0, 1], [0, 1],'r--"})

plt.xlim([0, 1])

ple.ylim([0, 1])

plt.ylabel {'True Positive Rate')

plt.xlabel {'False Positive Rate')
plt.savefig{'Charts/LBFGS Logistic ROC AUC.svg')
plt.show()

1I?)BFGS Logistic Regression Receiver Operating Characteristic Curve

7

0.8

©
o

True Positive Rate
o
~

0.2

-7 —— AUC=0.87

0.0 ~
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Examining the logistic regression’s coefficients shows which parameters are the most

influential in determining whether a failure is predicted to occur or not.

coefs = pd.concat ([pd.DataFrame (x train.columns),
pd.DataFrame {np.transpose (regression.coef)}], axi=s = 1)

L

coefs.columns = ["Column”, "Coefficient™]
coefs

The most influential positive coefficients in this regression are smart_2_cat value 2 at 24.94,

smart_220 cat value 2 at 15.66, and smart_226 _cat value 1 at 15.14. The most influential

63

negative coefficients in this regression are smart_223 cat value 1 at -22.03, smart_184 cat value

0 at -21.49, and manufacturer_Toshiba at -14.98.

The next standard model trained and tested was a decision tree with the maximum depth

set to 20. A few other depths were tried, going as high as 100, but this limit amount performed

the best out of the attempts.

64

from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import plot tree

tree = DecisionTreeClassifier(max depth = 20, splitter = 'best’', kY

]

random state = 13

tree.fit(x train, y train)

DecisionTreeClassifier (max depth=20, random state=13)

Once trained, the model was scored in the same fashion as the logistic regression model

previously.

tree accuracy = tree.score(x test, y test)
tree accuracy
0.9690331263043713

tree predictions = tree.predict(x test)
actual = y test

tree confusion = confusion matrix(actual, tree predictions)
tree confusion

arrav([[2126980, 6T7897],
[Ta, 6011, dtype=inttd)

Unfortunately, the decision tree model did not perform as well as the logistic regression in any

way. Its false positive amount was higher, and its true negative count was lower.

tree precision = precision score(actual, tree predictions)
tree precision

0.000BE291125270308157

print(classification report{actual, tree predictions))

precision recall fl-score support

False 1.00 0.97 0.98 2194887
True 0.00 0.44 0.00 138
accuracy 0.87 2185023
macro avg 0.30 0.71 0.449 2185023

weighted avg 1.00 0.97 0.498 2185023

65

tree probabilities = tree.predict proba(x test)
predictions = tree probabilities[:,1]

tree false positive rate, tree true positive rate, threshold =Y
roc curve(y test, predictions)

tree roc auc = auc{tree false positive rate, tree true positive rate)
tree roc auc

0.690020260090082078

plt.title {'Decision Tree Receiver Operating Characteristic Curve')

plt.plot(tree fal=e positive rate, tree true positive rate, 'blue’,
label = 'AUC = %0.2f"' % tree roc auc)

plt.legend(loc = '"lower right')

plt.plot ([0, 1], [0, 1],"'r--")

ple.xlim ([0, 1])

ple.ylim ([0, 1])

plt.ylabel {"True Positive Rate')

plt.xlabel ("Fal=se Positive Rate')

plt.savefig('Charts/Tree ROC RUC.svg')

plt.show()

Decision Tree Receiver Operating Characteristic Curve

1.0

0.8
()
T
X 06
()
=
.“‘%
o
o
o 04
2
|_

0.2

ol —— AUC =0.69
0.0 “7
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

66

Additionally, the decision tree was mapped out and plotted to examine the decisions and
branches.

fig, ax = plt.subplots(figsize=(40, 20})

plot tree(tree, fontsize = &, max depth = 3, class names = True, kY
feature names = x train.columns)
plt.savefig('Charts/Decision Tree.svg', dpi=100)
plt.savefig('Charts/Decision Tree.png', dpi=100)
=5
= = ==
== = == E == = =
| |

Zooming into this image to read the text shows that pca_component_6 <= 0.504 is the first split,
followed by pca_component_9 <=0.074 and pca_component_4 <= 0.222 down the trunk. The
tree appears to have learned to use the PCA components to split at first and then only use the
categorical encodings to make fine decisions later.

A random forest modeled was trained and then scored the same ways as the previous

models next.

from sklearn.ensemble import RandomForestClassifier

forest = RandomForestClassifier(max depth = 20, verbose = 1, kLY
random =state = 13, n jobs = -1}

forest.fit(x train, y train.values.ravel ()}

[Farallel (n jobs=-1)]: Using backend ThreadingBackend with 12 concurrent wor
ker=.

[Farallel (n_jobs=-1)]: Done 2& tasks | elapsed: l6.5min

[Farallel (n_jobs=-1)]: Done 100 out of 100 | elapsed: 45.Bmin finished

RandomForestClassifier (max depth=20, n jobs=-1, random state=13, wverbose=1)

forest accuracy = forest.score(x test, ¥ test)
forest accuracy

[Farallel (n jobs=12}]: Using backend ThreadingBackend with 12 concurrent wor
ker=.

[Farallel (n jobs=12}]: Done 26 tasks | elapsed: 1.8=
[Farallel (n job==12}]: Done 100 cut of 100 | elapsed: 2.9z finished

0.80902342708937446

forest predictions = forest.predict(x test)
actual = y test

[Parallel (n jobs=12)]: Using backend ThreadingBackend with 12 concurrent wor
ker=.

[Parallel (n jobs=12)]: Done 2& tasks | elapsed: 1.8=
[Parallel (n jobs=12)]: Done 100 out of 100 | elapsed: 2.8z finished

forest confusion = confus=ion matrix(actual, forest predictioms)
forest confusion

array ([[21735338, 213497,
[g7, 449]1], dtype=inta4d)

The random forest had the least false positives out of all of the models, but also the least true
negatives. This model is likely the safest to come out of the project, but ultimately among the

least useful in a high-risk problem like detecting HDD failure.

forest precision = precision score(actual, forest predictions)
forest precision

0.002280903363865TE1ES

print{classification report{actual, forest predictions))

precision recall fl-score support

False 1.00 0.88 1.00 2194887

True 0.00 0.36 0.00 138
accuracy 0.8% 2185023
macro avg 0.50 0.68 0.50 2185023
weighted avg 1.00 0.88 1.00 2195023

forest probabilities = forest.predict proba(x test)
predictions = forest probabilities[:,1]

[Parallel (n jobs=12)]: Using backend ThreadingBackend with 12 concurrent wor
kers=.

[Parallel (n jobs=12)]: Done 26 tasks | elapsed: 1.8s
[Parallel (n jobs=12)]: Done 100 out of 100 | elapsed: 6.28 finished

forest false positive rate, forest true positive rate, threshold =Y
roc_curve (¥ _test, predictions)

forest roc auc = auc(forest false positive rate, forest true positive rate)
forest roc auc

0.79741320308598305

plt.title {"Random Forest Receiver Operating Characteristic Curve')

plt.plot (forest false positive rate, forest true positive rate, 'blue’,
label = 'AUC = %0.2f' % forest roc auc)

plt.legend{loc = 'lower right')

plt.plot ([0, 1], [0, 1],"'r--")

ple.xlim ([0, 1])

ple.ylim ([0, 1])

plt.ylabel {"True Positive Rate')

plt.xlabel ("Fal=se Positive Rate')

plt.=zavefig('Charts/Forest RCOC AUC.png')

plt.=zavefig('Charts/Forest ROC RAUC.svg')

plt.show()

69

Random Forest Receiver Operating Characteristic Curve

True Positive Rate

s — AUC =0.80

0.0 ~
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

To improve the random forest ensemble, a second ensemble was created to prioritize the

true negative results by weighting class failures as twice as important as non-failures.

weighted forest = RandomForestClassifier(max depth = 20, verbose = 1, LY
random state = 13, n jobs = -1, class weight = {0: 1, 1: 2})

weighted forest.fit(x train, ¥y train.values.ravel(})

[Farallel (n jobs=-1)]: Using backend ThreadingBackend with 12 concurrent wor
ker=.

[Farallel (n jobs=-1)]: Done 2& tasks | elapsed: 15.7min
[Farallel (n jobs=-1)]: Done 100 out of 100 | elapsed: 44.5min finished

RandomForestClassifier(class weight={0: 1, 1: 2}, max depth=20, n jobs=-1,
random state=13, verbose=l)

70

weighted forest accuracy = weighted forest.score(x test, y test)
weighted forest accuracy

[Farallel (n jobs=12)]: Using backend ThreadingBackend with 12 concurrent wor
kers=.

[Parallel (n jobs=12)]: Done Z& tasks | elapsed: 1.8=
[Parallel (n jobs=12)]: Done 100 cut of 100 | elapsed: 2.9z finished

0.971700979E986161

weighted forest predictions = weighted forest.predict{xz test)
actual = y test

[Parallel (n jobs=12)]: Using backend ThreadingBackend with 12 concurrent wor
kers=.

[Parallel (n jobs=12)]: Done 26 tasks | elapsed: 2.3=
[Parallel (n jobs=12)]: Done 100 out of 100 | elapsed: 6.52 finished

weighted forest confusion = confusion matrix(actual, L9
weighted forest predictions)
weighted forest confusion

array ([[2132851, 620367,
[81, 253]], dtype=intad)

Compared to the unweighted Random Forest ensemble, this weighted ensemble gains another 6
true negative classifications for a true negative rate of 40% rather than 36%, but also gains

40,687 false positive classifications, for 0.028%, instead of 0.0097% false positives.

weighted forest precision = precision score(actual, \
weighted forest predictioms)
weighted forest precision

0.000BE5T0966532001809

print{classification report(actual, weighted forest predictions))

precision recall fl-score support

0.0 1.00 0.97 0.89 21094887

1.0 0.00 0.40 0.00 138
accuracy 0.87 2185023
macro avg 0.30 0.69 0.4%9 2185023

weighted avg 1.00 0.87 0.98 2185023

71

weighted forest probabilities = weighted forest.predict proba(x test)
weighted predictions = weighted forest probabilities[:,1]

[Farallel (n jobs=12)]: Using backend ThreadingBackend with 12 concurrent wor
kers.

[Farallel (n jobs=12)]: Done 2& tasks | elapsed: 1.8=
[Farallel (n jobs=12)]: Done 100 out of 100 | elapsed: 6.28 finished

weighted forest false positive rate, weighted forest true positive rate, %
threshold = roc curve (y test, weighted predictions)

weighted forest roc auc = auc(weighted forest false positive rate,
weighted forest true positive rate)
weighted forest roc auc

0.789827248576E833

plt.title {'"Weighted Random Forest Receiver Operating Characteristic Curwve')
plt.plot (weighted forest false positive rate, \
weighted forest true positive rate, %\
'blue', label = 'AUC = %0.2f' % weighted forest roc auc)
plt.legend(loc = 'lower right')
plt.plot ([0, 1], [0, 1],"'z—-")
ple.xlim ([0, 1])
ple.ylim ([0, 1])
plt.ylabel {'Trus Positive Rate')
plt.xlabel {'False Positive Rate')
plt.savefig('Charts/Weighted Forest ROC AUC.png')
plt.savefig('Charts/Weighted Forest ROC AUC.svg')
plt.show()

] (}Neighted Random Forest Receiver Operating Characteristic Curve

7

True Positive Rate

00 0.2 0.4 0.6 0.8 1.0
False Positive Rate

72

Finally, two neural networks were built using PyTorch. The first was a simpler
architecture and the second a more complex architecture, but both were deep neural networks
(DNN) and implementations of multi-layer perceptrons (MLP). PyTorch requires the boolean
values to be converted to floating point data, so the dtypes in all datasets were changed before

the neural networks were defined.

for col in x train:
if x train[col].dtype = "bool™:
X train[col] = x train[col].astype (float)
x test[col] = x test[col].astype (float)

¥ _train = y train.astype(float)
¥ _test = y test.astype(float)

Once the data was in the appropriate form, the training and testing sets were loaded into tensors

and dataloaders were formed from the tensors.

train label = torch.tensor(y train.values)

trainset = torch.tensor(x train.values)

train tensor = data utils.TenscorDataset(trainset, train label)
trainloader = data utils.DataLoader(dataset = train tensor, E

batch size = 512, shuffle = True)

test label = torch.tensor(y test.wvalues)
testset = torch.tensor(x test.values)
test tensor = data utils.TensorDataset (testset, test lahel)
testloader = data utils.Dataloader (dataset = test tensor, N
batch size = 512, shuffle = True)

GPU-accelerated training via CUDA was used for training these networks and once confirmed

available, the GPU was assigned as the device to move tensors to for calculations.

torch.backends.cudnn.enabled

True

torch.cuda.is available()

True

print (torch.version.cuda)

10.2

device =

device

torch.device ("cuda:0" if torch.cuda.is_awvailable() else "cpu")

device (type="cuda', index=0)

The first MLP was defined to go from 49 input nodes to 24 hidden nodes to 12 hidden

nodes and then to 1 output node with leaky ReL.U activation functions on the input and hidden

73

layers. The output activation function was a sigmoid as this was a binary classification task. The

criterion used was the Binary Cross Entropy Loss, or BCELoss criterion. The optimizer was the

Adam algorithm with a very low learning rate as the dataset was quite large. The MLP’s weights

were then initialized with Xavier, or Glorot, initialization.

class nn Classifier(nn.Module):
def init (=elf):
super(). dinit ()

def

self.
self.
self
self.
zelf.

fcl = nn.Linear (49, Z24)
actl = nn.LeakyReLU()
.fcéd = nn.Linear(24, 12}
act2 = nn.LeakyReLU()
fc3d = nn.Linear(l2, 1)

forward(=elf, =x):

X

"

make sure input tensor 1S

x.view(-1, 49)

= gelf.actl(zelf.fcl(x))

gelf.actl (=zelf.fc2 (x))

torch.sigmoid (self.fc3 (x))

return x

neural network = nn Classifier()

criterion = nn.BCELoss ()

optimizer = optim.RAdam(neural network.parameters(), lr = le-7, N
weight decay = le-5)

def init weights(m):
if type(m) = nn.Linear:
torch.nn.init.xavier uniform (m.weight)
m.bias.data.fill (0.01)

neural network.apply(init weights)

nn Classifier|
(fcl) : Linear(in features=48, out features=24, bias=True)
(actl): LeakyRellU(negative slope=0.01)
(fc2) : Linear(in features=24, out features=12, bias=True)
(actd) : LeakyRellU(negative slope=0.01)
(fc3) : Linear(in features=12, out features=1, bias=True)

74

Finally, the number of epochs to train for was set to 10 and the model was moved to GPU

memory.

n train = len(x train)
epachs = 10
neural network.to(device);

The training loop is shown in the two screenshots below.

train losses = []
test_losses = []
current = 0

test loss min = np.Inf

for e in range (epochs):
neural network.train()
running loss = 0
for row, target in trainloader:
row = row.to(device)
target = target.to(device)

#target = torch.unsqueeze (target, 1}

optimizer.zero grad()

output = neural network(row.float())
loss = criterion(output, target.float())
loszsz.backward ()

optimizer.step()

running loss += loss.item()

Reporting

print(str(current) + " / " + str(n_train) + "({:.3f}%)".format((current / n_train} * 100), end = "\r",

current += len(row)

flush = True)

else:
neural network.eval()
test loss = 0
accuracy = 0

Turn off gradients for validation, saves memory and computations
with torch.no_grad():
for row, target in testloader:
row = row.to(device)
target = target.to(device)

§target = torch.unsqueeze (target, 1)

cutput = neural network(row.float())
test_loss += criterion({output, target.float())

current = 0

Calculate average losses
train_}osses.appendtrunning_}ossflenttrainloader}}
valid loss = test_;ossflenttestloader)

test losses.append(valid loss)

Print validation statistics

print("Epach: {}/{}.. ".format(e+l, epochs},
"Training Loss: {:.2f}.. ".faImﬂttIunning_}assflenttrainlaader}},
"Test Loss: {:.2f}.. ".format(valid loss))

Save the model if test loss has decreased
if test_;ossflenttestloadez} <= test loss min:
print('Test loss decreased ({:.4f} --—> {:.4f}). Saving model ...'.format(
test_loss_min, valid loss))
torch.save (neural network.state dict({), 'Models/Neural Network 1.pt')
test_loss_min = valid loss

Once the network had trained and tested through the 10 epochs, the training and test

losses were graphed.

plt.figure(figsize = (12, 3})
train ax, = plt.plot(np.arange(epochs), train losse=s, "'r—-', LY
lahel = "Training Loss")

test ax, = plt.plot{np.arange(epochs), test losse=s, 'b--', kLY
label = "Tezt Lozz")

plt.title ("Heural Network 1 Los=ses")

plt.xlabel ("Epoch™)

plt.ylabel ("Loss")

plt.xticks (range (0, epochs))

=

plt.grid{b = True, which = 'major', color w', linewidth =

w', linewidth =

(==)
.

wn
e

plt.grid{b = True, which = '"minor', color
plt.legend (handles = [train ax, test ax])
plt.savefig("Chart=/NN1 Lo=s=s Plot.swvg")
plt.savefig("Chart=/NN1 Lo=s=s Plot.png")

76

Neural Network 1 Losses

0.90 AN —
\\\ —=—- Test Loss
~,
0.85 N
~
\\
N
~
0.80 s
~
Sl
~

0.75 ™
[\\
[\\
S +

0.70 h

sl
b +

065 TTeeel__ T

oo I s e SO N I O

- TTmme—— T

i 1 2 . . 5 6 7 8 9

In order to score the MLP in the same way that the scikit-learn models were scored, the

model was given the test data and the output recorded.

neural network.eval()
output = []
pred targets = []

with torch.no grad():
for rows, targets in testloader:
rows = rows.to(device)

output += neural network(rows.float(})
pred targets += targets

The output was then adjusted to the binary predictions expected by the scoring functions

by setting a false prediction as less than or equal to 0.5 and a true predication as all other output.

nnl predictions = []
actual = []

for i, x in enumerate {output) :
if output[i].item{) <= 0.5:
nnl predictions.append(0)
el=e:
nnl predictions.append(l)

if pred targets[i].item() = 0.0:
actual .append (0)

elif pred targets[i].item() = 1.0:
actual .append (1)

nnl confusion = confusion matrix({actual, nnl predictions)

nnl confusion

array([[201el112, 17ETT73],

[32,

E4]]1, dtype=int&d)

77

The results are relatively good. The 84 true negatives were second only to the logistic regression,

but the 178,775 false positives were over double all other models.

nnl precision = precision score(actual, nnl predictions)

nnl precision

0.000469c436858083742

print{classification report(actual, nnl predictions))

precision
0 1.00
1 0.00

accuracy
macro avg 0.50
weighted avg 1.00

nnl fal=e positive rate, nnl true positive rate, threshold =%
roc_curve {actual, nnl predictions)

nnl roc auc

0.76B0088108221504]

plt.
plt.

plt.

plt

plt.
plt.
plt.
plt.
plt.
plt.
plt.

title ('Neural Network 1 Receiver Operating Characteristic Curve')
plot{nnl false positive rate, nnl true positive rate,

xlim ([0, 1])
ylim ([0, 1])

ylabel ({'True Positive Rate')
xlabel ("False Positive Rate')

savefig('Charts/NN1 RCC
savefig('Charts/NN1 RCC
show ()

AUC.png')
BOC.=svg')

recall fl-=score
0.82 0.9g
0.62 Q.00
0.82

0.77 0.48
0.82 0.9g

label = 'AUC = %0.2f' % nnl roc auc)
legend (loc = "lower right')
.plot([D, 11, [0, 11,'z——")

support

2194887
138

2195023
21895023
2195023

nnl roc_auc = auc(nnl_false positive rate, nnl true positive rate)

78

Neural Network 1 Receiver Operating Characteristic Curve

1.0

0.8
[0}
T
X 06
(O]
=
.‘%‘
O
[a
o 04
=
|_

0.2

o — AUC =0.77
0.0 ¥7
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

This neural network is a good model, but it is likely too simple of an architecture for this
scale of problem. A second MLP was then defined to go from 49 input nodes to 98 hidden nodes
to 72 hidden nodes to 36 hidden nodes to 9 hidden nodes and then finally to 1 output node with
leaky ReLU activation functions on the input and hidden layers. The output activation function,
criterion, optimizer, and weight initialization were the same as the first MLP. The number of

epochs for training however differed, instead being set to 70.

class nn Classifierd(nn.Module):
def init (self}):
super(). init ()
self.fcl = nn.Linear (4%, 98)
self.actl = nn.LeakyReLU ()

gelf.fc2 = nn.Linear (98, TZ)
gself.actd = nn.LeakyReLU ()
gelf.fc3d = nn.Linear (72, 3&)
self.act3d = nn.LeakyReLU ()
self.fcd = nn.Linear (36, 9)

self.actd4 = nn.LeakyReLU()
self.fcd = nn.Linear (9, 1)

def forward(self, =x=):
make sure inpu

¥ = Xx.view(-1, 4

= zgelf.actl (zelf.fcl (%))
= gelf.actd(=zelf.fc2(x))
gelf.act3(self.fc3 (x))
= zelf.actd (zelf.fcd(x))
= torch.sigmoid(=elf.fcl(x))

MoM oM oMM
If

return x

Once defined, the new MLP was trained using the same training and testing loop as the

79

first. The losses were then graphed in the same way. Finally, the same prediction conversion and

scoring was performed.

plt.figure(figsize = (18, 3))
train ax, = plt.plot{np.arange(epochs + 20), train losses,
labhel = "Training Loss"

- r

test ax, = plt.plot{np.arange(epochs + 20), test losses, 'b——",%

label = "Tezt Lozz")
plt.title ("Neural Network 2 Training and Test Losses")
plt.xlabel ("Epoch™)
plt.ylabel ("Loss"
plt.xticks (range (0, epochs + 20}))

plt.grid{(b = True, which = 'major', color = 'w', linewidth =
plt.grid(b = True, which = '"minor', color = 'w', linewidth
plt.legend (handles = [train ax, test ax])

plt.zavefig("Charts/NN2 Loss Plot 2.svg")
plt.savefig("Charts/NN2 Loss Plot 2.png")

I
=T
i

[=1

wn
e

Neural Network 2 Training and Test Losses
07 \ ==~ Training Loss
‘\ === TestLoss
\

0.6 A

Loss
-
7/

~~~~~

0.4 e
03 sEss=E sos S CR N RN

01234567 89101112131415161 7181 2R R2P LR RE BB BBBBBEBBBAHN UAAMUAUNDBB D HHHHHHBH 6BHHHBBH
Epoch

nn2 confusion = confusion matrix({actual, nnZ predictions)
nnZ confusion
array([[20535329, 13955E],

[ 34, 8711, dtype=inted)
nnZ precision = precision score{actual, nn2 predictions)
nnZ precision

0.000e084568T5E8T268R20

print{classification report{actual, nn2 predictions))

precision recall fl-score support

0 1.00 0.94 0.97 21094887

1 0.00 0.71 0.00 136

accuracy 0.04 2195023
macro avg 0.30 0.82 0.48 2185023
weighted avg 1.00 0.94 0.97 2195023

The scores for this second neural network are the best for the task out of all the tested
models. 71.32% of failures were correctly predicted and using a more complex network

architecture reduced the false positive count by 39,217, or 21.93%, from the first MLP.



81

l\#eoural Network 2 Receiver Operating Characteristic Curve at 70 Epochs

0.8

0.6

0.4

True Positive Rate

0.2

s — AUC =0.82

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

With the logistic regression model appearing to be the best ratio of true negative

predictions to false positive predictions, it is chosen to be test on the validation dataset.

regression accuracy = regression.score(x valid, y wvalid)
regression accuracy

0.97323124774961487

regression predictions = regression.predict(x valid)
actual = y wvalid

regression confusion = confusion matrix(actual, regression predictions)
regression confusion

arrav ([ [106B088&, 28935571,
[ 24, 4411, dtype=intad)

The logistic regression model proved to be an excellent solution for the task of predicting hard
drive failure. The false positives are quite low, and the 66.6% of failure instances were correctly

predicted.



regression precision = precision score (actual, regression predictions)
regression precision

0.0014966495450802022

print{classification report{actual, regression predictions))

precision recall fl-score support

False 1.00 0.97 0.499 1087443

True 0.00 0.85 0.00 6B

accuracy 0.87 1087511

macro avg 0.30 0.81 0.4%9 1087511

weighted avg 1.00 0.87 0.98 1087311
regression probabilities = regression.predict proba(x valid)

predictions = regression probabilities[:,1]

regression false positive rate, regression true positive rate, thresheld =\
roc_curve(y valid, predictions)

regression roc auc = auc{regression false positive rate, Y
regression true positive rate)
regression roc auc

0.BR27243456096373

plt.title ('LBFGS Logistic Regression Validation ROC Curve')

plt.plot {regression false positive rate, regression true positive rate, \
'blue', label = 'AUC = %0.2f"' % regression roc auc)

plt.legend(loc = '"lower right')

plt.plot ([0, 1], [0, 1],'z--")

plt.xlim ([0, 1])

plt.ylim ([0, 1])

plt.ylabel {'True Positive Rate')

plt.xlabel ('False Positive Rate')

plt.=savefiq('Chart=/LBFG5 Logistic Validation ROC AUC.=vg')

plt.savefiq('Chart=/LBFG5 Logistic Validation ROC AUC.png')

plt.show()



83

LBFGS Logistic Regression Validation ROC Curve

1.0

0.8
[0}
T
X 06
(O]
=
.‘%‘
O
[a
o 04
=
|_

0.2

o —— AUC =0.86
0.0 “7
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Data Summary and Implications

Throughout this study, six different models were created and trained for predictive
analysis of HDD failure to determine if the study factors significantly indicate impending hard
disk drive failure. As the analysis showed, all of the study factors are statistically significant and
useful for predicting HDD failure before it occurs. Based on the results of the exploratory data
analysis and the predictive analysis, the SMART attributes 5, 197, and 9 are the best predictors
for HDD failure. The manufacturer is also very influential when combined with the other data.

The logistic regression model or the more complex MLP neural network are the two best
model approaches for attempting to automate a data center’s approach to predicting HDD failure
before it happens so that the drive can be backed up and retired before the data is lost. The more

complex MLP neural network is the best approach to successfully predicting failure but does



84

have the drawback of a relatively large amount of false positive results. If this is a concern, the
logistic regression model is a close second in successful failure prediction with less than half of
the false positive rate. It is recommended that either of these models should be added to a
production backup pipeline so that they can assist in automating the flagging of drives at risk of
failing before the failure occurs.

A few limitations of this project exist. First, a very large amount of the dataset was made
up of missing values. A more complete dataset would greatly improve the accuracy and ability of
the predictive models and allow for more possibilities of key predictors as many columns of data
had to be dropped from the dataset because of their missing values. Another limitation that
deserves caution is that the ratios of drives made by each manufacturer in the dataset is very
imbalanced. No assumptions about value or reliability of the four manufacturers included in the
dataset should be made from this study.

A third limitation is that the dataset was extremely imbalanced in terms of the minority
(failure) and majority (non-failure) classes. Though SMOTE succeeded exceptionally well at
allowing predictive models to learn from the imbalanced data, it does introduce bias as the
synthetically created instances of the minority classes overrepresent their information in the
analysis. Though difficult given the rarity of HDD failure, more instances of failure would
improve the results and predictive power of this analysis. Finally, working computer memory
was a great limitation throughout the project as the dataset is so large. This limitation prevented
factor analysis of mixed data from being performed and PCA had to be selected as the
alternative.

Several ways to continue and improve this study exist. As computing power was a

limiting factor, only a few hyperparameter combinations per model could be tested. Scikit-



85

learns’ grid_search_cv would be an excellent way to set up, train, and test combinations of
model hyperparameters to further improve each model. This would work especially well to
improve the decision tree and random forest models.

Though it would create far more complexity, rerunning the analysis and recreating the
predictive models for each of the manufacturers would remove nearly all of the difficulty in
filling NaN values, as most missing values are tied to the manufacturer’s implementation of
SMART. The model column would be able to be kept in its stead, specializing the information
more for each drive. Additionally, it would allow for much greater specialization in predictions
as a disproportionate amount of unexplainable variance in values came from the differences in
drive manufacturer.

For smaller projects, continuations of the study include using different ratios of SMOTE
rather than equalizing the failure class ratio, testing a class weighted random forest without or
with reduced SMOTE, and testing different MLP neural network architectures with different
learning rates.

Finally, the last major proposal for study continuation is to restructure the approach to the
dataset and build up to using a recurrent neural network (RNN) in place of the other models and
MLP neural networks. RNNs excel at working with time series data. This study’s approach took
the time series data and flattened it into hard drive days for simplicity of study and analysis
rather than treating the data as time progression throughout the quarter. Though it would be
substantially more difficult, the results would likely be unmatched by anything this study’s

current approach can result in.



86

References

Acronis. Knowledge Base 9105. S.M.A.R.T. Attribute: Reallocated Sectors Count | Knowledge
Base. https://kb.acronis.com/content/9105.

Acronis. Knowledge Base 9109. S.M.A.R.T. Attribute: Power-On Hours (POH) | Knowledge
Base. https://kb.acronis.com/content/9109.

Acronis. Knowledge Base 9128. S.M.A.R.T. Attribute: Load Cycle Count; Load/Unload Cycle
Count | Knowledge Base. https://kb.acronis.com/content/9128.

Acronis. Knowledge Base 9133. S.M.A.R.T. Attribute: Current Pending Sector Count |
Knowledge Base. https://kb.acronis.com/content/9133.

Acronis. Knowledge Base 9152. S.M.A.R.T. Attribute: Load/Unload Cycle Count | Knowledge
Base. https://kb.acronis.com/content/9152.

Backblaze. (2020). data_Q4 2019. San Mateo, CA; Backblaze.

Klein, A. (2015, April 16). SMART Hard Drive Attributes: SMART 22 is a Gas Gas Gas.
Backblaze Blog | Cloud Storage & Cloud Backup.
https://www.backblaze.com/blog/smart-22-is-a-gas-gas-gas/.

Painchaud, A. (2018, October 31). 8 Reasons on How Data Loss Can Negatively Impact Your
Bussiness. https://www.sherweb.com/blog/security/statistics-on-data-loss/.

Sanders, J. (2018, November 13). Western Digital spins down HGST and Tegile brands in hard
disk market shuffle. TechRepublic. https://www.techrepublic.com/article/western-digital-
spins-down-hgst-and-tegile-brands-in-hard-disk-market-shuffle/.

Weiss, G. M. (2013). Foundations of Imbalanced Learning. Imbalanced Learning, 13-41.
https://doi.org/10.1002/9781118646106.ch2



