
 1

Statistical Analysis of Hard Disk Drive Failure

Philip Matthew Unrue

Western Governors University

 2

Abstract

Hard drive failure is the most common form of data loss, which is one of the most impactful problems

that businesses can experience. Being able to predict which hard drives are at the highest risk of failure

based on understanding of combinations of routine diagnostics test results is an ideal solution to backup

and replace failing drives before the data is lost. Backblaze’s 4th quarter data from 2019 is examined to

determine what information is most relevant to imminent hard drive failure on the day measured. A

logistic regression model and a decision tree are examined alongside PCA to look for important

predictors. A random forest ensemble model and neural networks are then created to find the most

promising predictive model for detecting impending hard drive failure.

 3

Statistical Analysis of Hard Disk Drive Failure

 Data helps businesses solve problems, make better decisions, and understand consumers,

but a lot of data needs to be stored and kept available to enable these benefits. Hard drive failure

is the most common form of data loss, which is one of the most impactful problems that

businesses can experience today as simple drive recovery can cost up to $7,500 per drive

(Painchaud, 2018). For data centers, keeping multitudes of businesses’ data intact for their own

operations is crucial. Being able to predict which hard drives are at the highest risk of failure

based on understanding of combinations of routine diagnostics test results is an ideal solution to

backup and replace failing drives before the data is lost.

Research Question

 What factors indicate impending hard disk drive (HDD) failure? The null hypothesis is

that study factors do not significantly indicate impending hard disk drive failure. The alternative

hypothesis is that study factors do significantly indicate impending hard disk drive failure. The

study factors examined were sixty-two Self-Monitoring, Analysis and Reporting Technology

(SMART) test result values and three values of drive information, namely model number, drive

capacity, and failure status. These study factors can easily be gathered daily for each drive in a

data center without downtime and then maintained in a database to be leveraged for HDD

retirement with as little drive life wasted and as little data lost as possible. Once significance of

these factors was shown, logistic regression models, a decision tree, two random forest

ensembles, and two Multi-Layer Perceptron (MLP) models were examined to determine a best

approach to predicting HDD failure.

 4

Data Collection

 The dataset used was Backblaze’s 4th quarter data from 2019 (Backblaze, 2020). All of

the needed data was contained within the .zip file that Backblaze provides to the public for

research and examination, simply downloaded from their web page. The dataset contains .csv

files for each day of its corresponding quarter, in this case from 2019-10-01 to 2019-12-31. As

an example, the subsection of the dataset for 2019-10-01 contains 115,259 rows of data.

However, as this data contains recorded readings from a live data center, the number of hard

drives and thus rows, changes daily as failed drives were taken out and new drives were

installed. The 129 column attributes of the dataset are Date, Serial Number, Model Number,

Capacity, Failure, 62 SMART test result values, and 62 normalized values of the SMART

values. The Failure attribute is the dependent variable of this study and is a qualitative binary

categorical variable. The Date, Serial Number, and Model are nominal qualitative independent

variables. Finally, the SMART value columns are continuous quantitative independent variables.

As stated in Backblaze’s Hard Drive Data and Stats page (Backblaze, n.d.), this dataset is free for

any use as long as Backblaze is cited as the data source, that users accept that they are solely

responsible for how the data is used, and that the data cannot be sold to anybody as it publicly

available.

Data Extraction and Preparation

 In this project, Python and pandas were extensively used for the loading, tidying, and

manipulation of the dataset. All of the data handling and analysis were performed in a Jupyter

notebook. The dataset is made up of 92 .csv files totaling 3.13GB of text data. As hard drive

 5

failure is an extremely rare event, all of these days are needed to be considered together in order

to have enough failures to draw conclusions. The project began by combining all parts of the

dataset from their .csv files into a single file. Python’s glob module was used to create a

generator of all dataset files in the project directory and a new dataset file made up of the column

indexes from the first file and the rows of each .csv file was written to disk.

 Before loading the combined dataset file into working memory, the rows were counted by

reading the lines of the file sequentially, finding a total of 10,991,209 rows of data. The

combined dataset was loaded into a pandas dataframe as 126 float64 columns, 2 int64 columns,

and 3 object (string) columns, for a total of 131 columns of data. The failure column values were

counted to find that out of the 10,991,209 hard drive days, there were only 678 failures, which

gives a failure rate of 0.006169%.

 Weiss (2013) defined the imbalance ratio as the ratio between majority and minority

classes with a modestly imbalanced dataset having an imbalance ratio of 10:1, and extremely

 6

imbalanced datasets as having an imbalance ratio of 1000:1 or greater (pg. 15). This dataset has

an imbalance ratio of approximately 16,210:1 and as such requires very careful cultivation for

any predictive model to successfully learn from. The rarity of the positive failure cases was also

the reason that the entire 4th quarter dataset was required.

 Unfortunately, this combined file required too much memory to load all at once for

hardware limitations. It needed 13.5GB for just the data, not including the memory needed for

the OS and other software, nor memory for calculations.

 Memory constraints often affect the available approaches to analyzing datasets. In the

base combined form, this dataset was too large to load into memory and perform most analysis

algorithms. Out-of-memory approaches could have helped solve this problem but reducing the

amount of loaded data allowed for standard in-memory approaches. As this dataset contains both

raw and normalized values for all of the SMART values, a simple way to deal with the memory

issues was to divide the dataset into a raw form and a normalized form. Two lists were created

from the columns, excluding the normalized or raw SMART value columns for each respective

file, and were then written to disk. Though preserved, the normalized data was ultimately

ignored from that point on, as normalization can be performed after all data tidying and

 7

preparation is performed and before predictive models relying on normalization are created.

 After the dataset was split off into all columns except the normalized columns, the raw

value dataset was loaded back into memory for preparation with enough memory leftover for the

appropriate analyses. In examining the dataset, all SMART value columns were found to have

NaN, pandas’ representation of null, values in them. The model column contains information on

the manufacturer of the drive as well as the drive model itself. As SMART implementation

varies by manufacturer, that is important information to leverage. Two model values stand out,

the “DELLBOSS VD” and the “Seagate SSD” models, pertaining to 60 drives and 96 drives

respectively. The first is a RAID controller and contains no SMART values in any row, and the

 8

second appears to be a generic catch-all model value for some Seagate drives. Neither have any

failures in the dataset and are questionable entries, so these rows were removed.

 A dictionary of manufacturer and distinct model value was created for each dataset model

value, and the column was divided into a new model column and a manufacturer column.

Some columns contain redundant information, like the date column containing characters for the

year. To save some memory on disk backups and potentially loading memory, the column was

adjusted to only contain the month and day, and its dtype was changed to category.

 9

The model column was explicitly converted to categorical data and failure was converted to

boolean in the same manner.

 In examining the capacity_bytes column for values to indicate reason for conversion to

categorical data, 1108 drive days distributed across all manufacturers were found to have an

error value of -1 rather than their actual capacity. These rows had the potential to be an excellent

signal for a failing drive, but ultimately none of the affected drives have a positive failure.

Though this was the largest amount of data cut from the dataset at this point, it only makes up an

insignificant 0.01% of the data. Given the error and lack of failures, these rows were dropped

from the dataset.

 10

Once the error rows were dropped, the value counts of the capacity_bytes column were

examined for further irregularities.

While some capacities are much rarer than others, none are out of place. To save memory and to

make the values more readable, the byte values were changed to represent the drives’ capacity in

terabytes. Peculiarly, the values did not line up with the 1024 kilo base or the rounded 1000 kilo

base representations of drive capacity. They were uniform however and were easily rounded to

an appropriate value. Once the new capacity column was created, the original was dropped.

 11

 12

 With the general tidying complete, the univariate distributions were examined to gain a

better sense of the data. Examining the distribution of the first column, date, showed some sort of

testing or operational failure on November 5th.

Drive capacities are mostly 4, 8, and 12 TB, likely coinciding with large investments in new

drives for the datacenter and possibly alongside the price lowering of specific models.

 13

The manufacturer of the most drives in this dataset is Seagate at 72.59%. HGST is the second

highest at 24.24%. Western Digital is the least represented manufacturer in the dataset with only

0.23%, but as HGST was acquired by Western Digital in 2012 (Sanders, 2018), the drives in this

dataset are likely be quite similar between the two manufacturers given the seven-year timespan

between then and the time of dataset recording and creation. Finally, Toshiba is the other

manufacturer, with 2.94% of the dataset. This amount is quite low and potentially made it

difficult to accurately predict their drives in comparison.

 14

 The SMART values vary greatly from the number of different types of drives that exist in

this dataset. Before the columns could be graphed appropriately, the NaN values needed to be

examined and then interpolated or filled in with summary statistics. The proportion of the

models’ missing values for each column was calculated and then graphed as a heatmap.

 15

 For specific numbers on the NaN values in each column, a new dataframe was created

from the count output row of pandas’ describe function, which counts the non-NaN values of the

column. The percentage of non-NaN values was then added as an additional column in the new

dataframe. To assist in quick recognition of the information, a styling function was created and

then applied to the percentage column.

 16

Between the heatmap and the information in the count_df dataframe, many of the useless

columns of the dataset became apparent. From this dataframe, a list was created for the

completely empty columns and then another for the columns with less than 80% of filled values.

 17

Using this list, all columns made up of exclusively NaN values were dropped.

In order to determine the appropriate summary statistic to use for filling in the NaN values for

each SMART column, the non-NaN values were graphed to examine their distribution.

 18

 The process of filling in the NaN values began with ordering the columns in order from

the lowest amount of missing values to the highest amount. Doing so revealed groups of columns

with the same amount of missing values made up of the same models of drives. The first five

mostly complete columns all had two NaN values, which were the result of two rows that had no

raw smart values at all. Both drives failed, making them quite important for predicting future

failure. However, the lack of data made them useless for predicting future failure in their current

form.

 The most likely scenario is that both drives failed just before the diagnostics were

collected. As such, these two rows were deleted and their associated row for the date before their

 19

marked failures were updated to have failed that day instead. This kept two of the extremely

imbalanced minority class rows in the dataset while also making the least amount of

assumptions. Presumably, the previous day for the same drives as determined by serial_number

and date had the most pertinent information in their SMART values for the failure instances.

Once the previous date rows for those drives had their failure value changed, the empty rows

were dropped.

 20

 The second grouping of columns smart_3_raw, smart_4_raw, smart_5_raw,

smart_7_raw, smart_10_raw, smart_197_raw, smart_198_raw, and smart_199_raw all had 8794

values missing and were found to be the same 8794 rows. These rows were made up of 3

capacity variations of the same model made by Seagate.

 21

The means and medians, based on the non-missing column distribution, from the same

manufacturer and the models' respective capacity_TB categories if available, were used to fill the

SMART columns’ missing values. For each of the columns smart_3_raw, smart_4_raw,

smart_5_raw, smart_7_raw, smart_197_raw, smart_198_raw, and smart_199_raw the

availability of each respective drive capacity value within the matching manufacturer value

subset was checked. In each case, only the 0.50 capacity_TB value had matching drives to use

for a more specialized summary statistic.

 22

 With this knowledge, the distributions of the available capacity_TB value and of the

general matching manufacturer, Seagate, were graphed for each column to determine whether the

mean or median should be used to fill the missing values for the two subsets of rows.

 23

In the cases of smart_3_raw, smart_5_raw, smart_7_raw, smart_197_raw, smart_198_raw, and

smart_199_raw, the two distributions were quite non-normal, and the median was chosen to fill

missing values with. The two distributions for smart_4_raw were much closer to normal

distributions and the mean was chosen for it.

These summary statistics values were then used to fill the missing values in each column,

resulting in 0 NaN values.

 24

 For the smart_10_raw missing values, the median of the same manufacturer drives was

used for all drive capacity_TB categories as all Seagate drives only had 0.0 as their value for the

column. This means that a subset could not be given a more specialized summary statistic for

filling its missing values as in the other columns in the same group.

 The smart_193_raw column was a different problem than the last group of columns. This

group had 53985 rows with NaN values, which was still low enough in this large dataset to fill

values without major effects on the statistics of the data. An important note here is that some

manufacturers use different SMART attributes to represent the same information. Most Seagate

 25

and some Western Digital and Hitachi drives use 225 rather than 193 to store the Load/Unload

Cycle Count value (Acronis, Knowledge Base 9128; Acronis, Knowledge Base 9152). In this

dataset no row had both 193 and 225 values.

The only rows that did not have either value were the exact same rows that made up the last

group of columns.

The 45193 other rows were filled by combining the two columns that represent the same

information into a new smart_193_225 column.

 26

As the 8792 rows missing from the new smart_193_225 column are the same rows from the first

grouping of NaN columns, the same approach was taken to fill their missing values. As the

distributions were not normal, the median was chosen for this column. The median of the

available 0.50 capacity_TB drives was calculated and the median of all drives of the same

manufacturer was calculated for the drives of other capacities.

 27

 28

The missing values were then filled with the medians for each subset.

 The remaining columns with NaN values each had over 2 million missing values. The

columns smart_240_raw, smart_241_raw, smart_242_raw, smart_187_raw, smart_188_raw, and

smart_190_raw had over 70% of their values filled. This amount was the decided cutoff for

filling missing values with summary statistics.

 Notably, none of the HGST drives had a value for the smart_240_raw column, and none

of the Toshiba drives had values for the smart_241_raw and smart_242_raw columns. As such,

specialized summary statistics could not be calculated for each subset of drives by manufacturer

as in the previous cases. The means of all available rows for each column were used to fill the

missing values.

 29

 30

 The group of the smart_187_raw, smart_188_raw, and smart_190_raw columns were

divided by manufacturer, with all Seagate drives having the values and none of the other drive

manufacturers having the values.

Given the split across manufacturers, specialized summary statistics could not be calculated for

each subset of drives by manufacturer as in the earlier cases. Based on the distributions of the 3

columns, the median was chosen to fill missing values for smart_187_raw and smart_188_raw,

while the mean was selected for the smart_190_raw column.

 31

 32

 The remaining 32 columns have over 30% of their values missing, and an individualized

approach was taken with each of them. In some cases, categories of existing values were used to

preserve some of the information with NaN values being their own category. In many cases,

there was too little data or variance for the column to be useful in the analysis.

 The smart_195_raw, smart_189_raw, and smart_183_raw columns had extremely little

difference in distributions between failure and non-failure instances, and only had values on

 33

some Seagate drives. To avoid collinearity with the manufacturer column for little predictive

benefit, the columns were dropped.

 Many of the columns had less than 2% of their values filled in and had no failure

instances. Failing to have instances in both classes renders any predictive power the columns

may have had useless, and as such these columns were dropped. The columns in this group were

smart_233_raw, smart_235_raw, smart_232_raw, smart_168_raw, smart_170_raw,

smart_218_raw, smart_174_raw, smart_16_raw, smart_17_raw, smart_173_raw,

smart_231_raw, and smart_177_raw.

 34

 Several of the columns did have instances of failures and non-failures but had no variance

in the values and as such were dropped. Without variance, no distinction exists between failure

and non-failure, making the columns useless for analysis and prediction. The columns in this

group were smart_18_raw, smart_224_raw, smart_23_raw, smart_24_raw, and smart_254_raw.

 35

 The smart_22_raw column is quite different from the other types of SMART values as it

is an indication of helium levels encased in certain HGST drives (Klein, 2015). Given this, it

would have made no sense to fill this column's NaN values in rows of drives from other

manufacturers. Beyond that, the dataset did not have any failures with abnormal levels in this

 36

column, making this column potentially a negative impact to the real-world effectiveness of a

predictive model. Given this risk, the purpose of the value, and the risk of collinearity with the

manufacturer column, this column was dropped from the dataset.

 The smart_184_raw column was another unique column as it had very few values other

than zero, but half of the non-zero values were instances of failure. To preserve this information

despite most of the values being NaN values, a new Boolean column was created where 0 or

 37

NaN values were false and non-zero values were true. The original column was then dropped

from the dataset.

 38

 39

 The ten columns remaining were smart_191_raw, smart_200_raw, smart_196_raw,

smart_8_raw, smart_2_raw, smart_223_raw, smart_11_raw, smart_220_raw, smart_222_raw,

and smart_226_raw. This group of columns did not have a lack of value variance nor were they

split directly on manufacturer lines, but they still had over 30% of their values missing. Filling in

that large of a proportion of missing values with summary statistics would likely have skewed

the data significantly. To avoid losing all of the information contained in the available data,

categorical columns for each original column were created.

 Each categorical column was given 3 possible category values. For each categorical

column, the value of 0 was given to rows that had NaN values, the value of 1 was given to rows

that had a value below the mean of the respective original column, and the value of 2 was given

to rows that had a value above the mean of the respective original column, except in the case of

smart_220_raw where the median was used for these comparison assignments instead. Once the

creation and value assignment of the categorical columns were verified, the original columns

were dropped from the dataset.

 40

 Though the decision and process of NaN value management was the same as the other 7

columns, the 3 columns smart_220_raw, smart_222_raw, and smart_226_raw deserve additional

explanation. These columns were split entirely along manufacturer lines and had large

percentages of missing values but were some of the few predictors available for Toshiba drives.

However, despite the Toshiba drives not having the highest rate of failure among the

manufacturers, these 3 columns were among the highest column correlations to failure in the

 41

entire dataset. These columns were given the same categorical column approach to ensure the

enough predictors existed for the Toshiba drives.

 42

With this, the number of dimensions in the dataset was reduced to 36 and all values in all

columns were filled. The univariate distributions of all columns were plotted together in the form

of histograms for continuous data and countplots for categorical data.

 43

 44

 At this point in the project, the quantitative column correlation coefficients and the

qualitative columns contingency tables were created. Before factor analysis and model creation

could occur, one last series of data preparation had to occur. The dataset then prepared through

standardization and normalization, as well as the test, train, and validation splits occurring then.

Doing these before the PCA ensures that no data is contaminated with the influence of the testing

and validation data. Additionally, this must occur before SMOTE or any other oversampling

technique can be performed. At this point, the date and serial_number columns were also

dropped as identification columns were no longer needed.

The first split is 80% Train and 20% Test, stratified on the y_df / failure series. Using stratified

sampling ensures that there is an evenly distributed proportion of minority classes in the training,

testing, and validation datasets despite the extreme imbalance of the minority class from the

rarity of hard drive failure.

 45

The ratios between the minority and majority classes are calculated for each dataset split to

ensure that the stratified random sampling functioned properly. Although the ratios are not equal,

the sampling selected the closest ratio mathematically possible.

 The second split is 87.5% Train and 12.5% Validation, stratified on the y_df / failure

series, to result in 70% Train and 10% Validation overall.

 46

As in the first split between that training and testing datasets, the class ratios between the training

and validation datasets are also examined and found to be accurate.

 A scaler is created and fit to the training data in order to standardize the quantitative

columns for model training. This avoids any contamination of the training data by ensuring that

the test and validation datasets do not influence the training data at all, as the mean and standard

deviation of the data must be calculated to scale and normalize. The fit scaler can then be used

on the testing and validation datasets. Scikit-learn’s StandardScaler() was selected to produce

standardized and normalized data in the form that models like neural networks need for smooth

training.

A mean as close to zero as possible given the dataset and a standard deviation of 1 is a successful

standardization.

 47

Once proper standardization and normalization is confirmed, the scaler is then used to transform

the quantitative columns of the testing and validation splits.

Analysis

 With all data tidying and preparation complete, the analysis began with calculating the

Pearson correlation coefficients for all quantitative columns.

Preliminary examinations show that smart_197_raw and smart_198_raw have a nearly perfect

degree of collinearity with each other and little in comparison with any other column. In order to

prevent that from affecting the predictive models, the smart_198_raw column was dropped as it

 48

has a lower correlation with the dependent variable failure.

This dataframe is then used to create a heatmap of the column correlations, with the color scale

centered at 0 for both positive and negative correlations.

 49

 Examining the column correlations shows several important details. For potential

predictors for failure, smart_5_raw and smart_197_raw have the highest positive correlations

with failure, at 4.4% and 2.7%. SMART attribute 5 is the reallocated sectors count of drives,

which triggers when a read, write, or verification error occurs (Acronis, Knowledge Base 9105).

SMART attribute 197 is the current pending sector count, which is the count of unstable sectors

that are awaiting remapping (Acronis, Knowledge Base 9133). This value decreases as sectors

are remapped, but the value would remain consistently high if these sectors are unable to be

remapped. Both columns make complete sense as the highest correlation with failure and will

likely be the most important predictor variables for HDD failure.

 50

 Another prominent feature is smart_9_raw as the column with the most extreme

correlations with other columns, which is understandable given that SMART attribute 9

represents the total count of hours the drive has been in a power-on state (Acronis, Knowledge

Base 9109). Most other issues worth measuring are likely correlated with the drive age and

amount of operation. This column may also be a powerful predictor within predictive models as

an older drive is more likely to wear down to failure suddenly than a newer drive in general even

if other values are not present. Even if other predictors of failure are present in an instance, a

drive with an average or lower smart_9_raw value may represent a drive that will fail far sooner

than the average length of time to failure.

 Other features to note are that the smart_240_raw column has quite high correlations with

other independent variables and that smart_190_raw and smart_194_raw have a very high degree

of collinearity with each other and little in comparison with any other column. The dataset is

likely large enough to not need to worry about the multicollinearity affecting the predictive

power of the models, but the redundancy of information may skew the results.

 After examining the quantitative variables, the qualitative variables were assessed with

Fisher’s exact test. Pearson’s chi-squared was calculated on each for comparison, but the results

cannot be trusted as the data is not normally distributed. Rpy2 was used to load the R.stats

package for Fisher’s exact test, as neither scikit-learn nor scipy have an implementation of

Fisher’s exact test on contingency tables with dimensions greater than 2x2. Specifically, a

contingency table was created for each column through pandas’ crosstab method, and these

contingency tables were passed into a custom function that passes the contingency table into

rpy2, which embeds the R.stats code into the Python process and returns the R.stats Fisher_Test

with Monte Carlo p-value simulation output. The custom function then takes this output and

 51

displays it appropriately in the Jupyter notebook.

 52

 All columns were found to be significant, but smart_184_cat had the absolute lowest p-

value at 5.0214144599400225e-23.

As all were found to be significant, no columns were dropped to reduce dimensionality here.

Principal Component Analysis (PCA) is used for dimensionality reduction instead. However, the

model column was dropped as its contingency table was shown to be very sparsely filled and it

had redundant information with the manufacturer column.

 In the same way that the standardization was performed, the PCA was fit to the training

data only. PCA as a form of dimensionality reduction ensures that as little information, in the

form of inertia, is lost as possible for the given number of dimensions reduced. As this dataset is

quite large, any amount of dimensionality reduction greatly affects the speed and chance of

proper convergence in predictive models. This first PCA was created with a number of

components equal to the number of the quantitative columns to examine the inertia explained in

the dataset in order to determine the appropriate number of dimensions to use.

 53

 54

The influence of each column on each principal component was then examined by creating a

heatmap from a dataframe formed on the information.

 55

As these correlations are spread out well over the heatmap nothing else needed to be done with

it. The eigenvalues and explained inertia were used to create a scree plot, and this plot was used

alongside the cumulative inertia to determine that 13 principal components was the appropriate

amount of dimensionality reduction to use as these components made up 82.37% of the inertia of

the dataset in only 13 out of the 20, or 65%, of the total components.

 56

 57

A new PCA is created with the appropriate number of components and then fit to the training

data.

This PCA is used to transform the quantitative values of the dataframe. The original quantitative

columns are then dropped from the dataframe and the transformed values are merged in with a

pandas join() method.

 58

This process is then repeated with the test and validation datasets.

 59

While Factor Analysis of Mixed Data (FAMD) would have been ideal for dimensionality

reduction in this mixed data, the current hardware requirements and software availability do not

allow for it with such a large dataset.

 One last adjustment was needed before training the predictive models as the categorical

variables needed converting into Boolean encodings. Pandas get_dummies() method was used on

the categorical columns of each dataset split to produce dataframes of encoding columns. These

were then joined to the original dataframes of the train, test, and validation datasets after the

original categorical columns were dropped.

 Traditional training would fail as hard drive failure is an extremely rare occurrence. The

model would learn to only predict non-failure, making it useless for predicting failure.

As an illustration to this, a logistic regression model using the sag solver in scikit-learn was

trained on the extremely imbalanced training set and then scored on the test set.

 60

As predicted, the model learned the dataset quite well regarding accuracy, in which it attained a

nearly perfect score of the test data.

As predicted as well though, it could not have had worse precision, in which it attained the

lowest possible score of 0.0.

 Therefore, undersampling the non-failures, oversampling the failures, or a combination of

both will improve the training and production of the predictive models. These methods are

applied to the training data and reduce or eliminate the imbalance ratio for the training period.

This project used Synthetic Minority Oversampling Technique (SMOTE) to synthetically create

failure instances mathematically similar to the actual failures and did so until the imbalance was

eliminated at a 50/50 split between failure and non-failure instances.

 61

 With the SMOTE training dataset, a new logistic regression model is trained, using the

LBFGS solver.

This model attained a very respectable accuracy but more importantly successfully identified

63.97% of failure instances while only having a false positive rate of 2.75%. SMOTE

significantly improved the models training.

 62

The prediction probabilities, false positive and false negative rates, and the AUC were

calculated. By using all of these, an ROC was graphed.

 63

 Examining the logistic regression’s coefficients shows which parameters are the most

influential in determining whether a failure is predicted to occur or not.

The most influential positive coefficients in this regression are smart_2_cat value 2 at 24.94,

smart_220_cat value 2 at 15.66, and smart_226_cat value 1 at 15.14. The most influential

negative coefficients in this regression are smart_223_cat value 1 at -22.03, smart_184_cat value

0 at -21.49, and manufacturer_Toshiba at -14.98.

 The next standard model trained and tested was a decision tree with the maximum depth

set to 20. A few other depths were tried, going as high as 100, but this limit amount performed

the best out of the attempts.

 64

Once trained, the model was scored in the same fashion as the logistic regression model

previously.

Unfortunately, the decision tree model did not perform as well as the logistic regression in any

way. Its false positive amount was higher, and its true negative count was lower.

 65

 66

Additionally, the decision tree was mapped out and plotted to examine the decisions and

branches.

Zooming into this image to read the text shows that pca_component_6 <= 0.504 is the first split,

followed by pca_component_9 <= 0.074 and pca_component_4 <= 0.222 down the trunk. The

tree appears to have learned to use the PCA components to split at first and then only use the

categorical encodings to make fine decisions later.

 A random forest modeled was trained and then scored the same ways as the previous

models next.

 67

The random forest had the least false positives out of all of the models, but also the least true

negatives. This model is likely the safest to come out of the project, but ultimately among the

least useful in a high-risk problem like detecting HDD failure.

 68

 69

 To improve the random forest ensemble, a second ensemble was created to prioritize the

true negative results by weighting class failures as twice as important as non-failures.

 70

Compared to the unweighted Random Forest ensemble, this weighted ensemble gains another 6

true negative classifications for a true negative rate of 40% rather than 36%, but also gains

40,687 false positive classifications, for 0.028%, instead of 0.0097% false positives.

 71

 72

 Finally, two neural networks were built using PyTorch. The first was a simpler

architecture and the second a more complex architecture, but both were deep neural networks

(DNN) and implementations of multi-layer perceptrons (MLP). PyTorch requires the boolean

values to be converted to floating point data, so the dtypes in all datasets were changed before

the neural networks were defined.

Once the data was in the appropriate form, the training and testing sets were loaded into tensors

and dataloaders were formed from the tensors.

GPU-accelerated training via CUDA was used for training these networks and once confirmed

available, the GPU was assigned as the device to move tensors to for calculations.

 73

 The first MLP was defined to go from 49 input nodes to 24 hidden nodes to 12 hidden

nodes and then to 1 output node with leaky ReLU activation functions on the input and hidden

layers. The output activation function was a sigmoid as this was a binary classification task. The

criterion used was the Binary Cross Entropy Loss, or BCELoss criterion. The optimizer was the

Adam algorithm with a very low learning rate as the dataset was quite large. The MLP’s weights

were then initialized with Xavier, or Glorot, initialization.

 74

Finally, the number of epochs to train for was set to 10 and the model was moved to GPU

memory.

The training loop is shown in the two screenshots below.

 75

 Once the network had trained and tested through the 10 epochs, the training and test

losses were graphed.

 76

 In order to score the MLP in the same way that the scikit-learn models were scored, the

model was given the test data and the output recorded.

 The output was then adjusted to the binary predictions expected by the scoring functions

by setting a false prediction as less than or equal to 0.5 and a true predication as all other output.

 77

The results are relatively good. The 84 true negatives were second only to the logistic regression,

but the 178,775 false positives were over double all other models.

 78

 This neural network is a good model, but it is likely too simple of an architecture for this

scale of problem. A second MLP was then defined to go from 49 input nodes to 98 hidden nodes

to 72 hidden nodes to 36 hidden nodes to 9 hidden nodes and then finally to 1 output node with

leaky ReLU activation functions on the input and hidden layers. The output activation function,

criterion, optimizer, and weight initialization were the same as the first MLP. The number of

epochs for training however differed, instead being set to 70.

 79

 Once defined, the new MLP was trained using the same training and testing loop as the

first. The losses were then graphed in the same way. Finally, the same prediction conversion and

scoring was performed.

 80

 The scores for this second neural network are the best for the task out of all the tested

models. 71.32% of failures were correctly predicted and using a more complex network

architecture reduced the false positive count by 39,217, or 21.93%, from the first MLP.

 81

 With the logistic regression model appearing to be the best ratio of true negative

predictions to false positive predictions, it is chosen to be test on the validation dataset.

The logistic regression model proved to be an excellent solution for the task of predicting hard

drive failure. The false positives are quite low, and the 66.6% of failure instances were correctly

predicted.

 82

 83

Data Summary and Implications

 Throughout this study, six different models were created and trained for predictive

analysis of HDD failure to determine if the study factors significantly indicate impending hard

disk drive failure. As the analysis showed, all of the study factors are statistically significant and

useful for predicting HDD failure before it occurs. Based on the results of the exploratory data

analysis and the predictive analysis, the SMART attributes 5, 197, and 9 are the best predictors

for HDD failure. The manufacturer is also very influential when combined with the other data.

 The logistic regression model or the more complex MLP neural network are the two best

model approaches for attempting to automate a data center’s approach to predicting HDD failure

before it happens so that the drive can be backed up and retired before the data is lost. The more

complex MLP neural network is the best approach to successfully predicting failure but does

 84

have the drawback of a relatively large amount of false positive results. If this is a concern, the

logistic regression model is a close second in successful failure prediction with less than half of

the false positive rate. It is recommended that either of these models should be added to a

production backup pipeline so that they can assist in automating the flagging of drives at risk of

failing before the failure occurs.

 A few limitations of this project exist. First, a very large amount of the dataset was made

up of missing values. A more complete dataset would greatly improve the accuracy and ability of

the predictive models and allow for more possibilities of key predictors as many columns of data

had to be dropped from the dataset because of their missing values. Another limitation that

deserves caution is that the ratios of drives made by each manufacturer in the dataset is very

imbalanced. No assumptions about value or reliability of the four manufacturers included in the

dataset should be made from this study.

 A third limitation is that the dataset was extremely imbalanced in terms of the minority

(failure) and majority (non-failure) classes. Though SMOTE succeeded exceptionally well at

allowing predictive models to learn from the imbalanced data, it does introduce bias as the

synthetically created instances of the minority classes overrepresent their information in the

analysis. Though difficult given the rarity of HDD failure, more instances of failure would

improve the results and predictive power of this analysis. Finally, working computer memory

was a great limitation throughout the project as the dataset is so large. This limitation prevented

factor analysis of mixed data from being performed and PCA had to be selected as the

alternative.

 Several ways to continue and improve this study exist. As computing power was a

limiting factor, only a few hyperparameter combinations per model could be tested. Scikit-

 85

learns’ grid_search_cv would be an excellent way to set up, train, and test combinations of

model hyperparameters to further improve each model. This would work especially well to

improve the decision tree and random forest models.

 Though it would create far more complexity, rerunning the analysis and recreating the

predictive models for each of the manufacturers would remove nearly all of the difficulty in

filling NaN values, as most missing values are tied to the manufacturer’s implementation of

SMART. The model column would be able to be kept in its stead, specializing the information

more for each drive. Additionally, it would allow for much greater specialization in predictions

as a disproportionate amount of unexplainable variance in values came from the differences in

drive manufacturer.

 For smaller projects, continuations of the study include using different ratios of SMOTE

rather than equalizing the failure class ratio, testing a class weighted random forest without or

with reduced SMOTE, and testing different MLP neural network architectures with different

learning rates.

 Finally, the last major proposal for study continuation is to restructure the approach to the

dataset and build up to using a recurrent neural network (RNN) in place of the other models and

MLP neural networks. RNNs excel at working with time series data. This study’s approach took

the time series data and flattened it into hard drive days for simplicity of study and analysis

rather than treating the data as time progression throughout the quarter. Though it would be

substantially more difficult, the results would likely be unmatched by anything this study’s

current approach can result in.

 86

References

Acronis. Knowledge Base 9105. S.M.A.R.T. Attribute: Reallocated Sectors Count | Knowledge

Base. https://kb.acronis.com/content/9105.

Acronis. Knowledge Base 9109. S.M.A.R.T. Attribute: Power-On Hours (POH) | Knowledge

Base. https://kb.acronis.com/content/9109.

Acronis. Knowledge Base 9128. S.M.A.R.T. Attribute: Load Cycle Count; Load/Unload Cycle

Count | Knowledge Base. https://kb.acronis.com/content/9128.

Acronis. Knowledge Base 9133. S.M.A.R.T. Attribute: Current Pending Sector Count |

Knowledge Base. https://kb.acronis.com/content/9133.

Acronis. Knowledge Base 9152. S.M.A.R.T. Attribute: Load/Unload Cycle Count | Knowledge

Base. https://kb.acronis.com/content/9152.

Backblaze. (2020). data_Q4_2019. San Mateo, CA; Backblaze.

Klein, A. (2015, April 16). SMART Hard Drive Attributes: SMART 22 is a Gas Gas Gas.

Backblaze Blog | Cloud Storage & Cloud Backup.

https://www.backblaze.com/blog/smart-22-is-a-gas-gas-gas/.

Painchaud, A. (2018, October 31). 8 Reasons on How Data Loss Can Negatively Impact Your

Bussiness. https://www.sherweb.com/blog/security/statistics-on-data-loss/.

Sanders, J. (2018, November 13). Western Digital spins down HGST and Tegile brands in hard

disk market shuffle. TechRepublic. https://www.techrepublic.com/article/western-digital-

spins-down-hgst-and-tegile-brands-in-hard-disk-market-shuffle/.

Weiss, G. M. (2013). Foundations of Imbalanced Learning. Imbalanced Learning, 13–41.

https://doi.org/10.1002/9781118646106.ch2

